Skip to main content
Log in

Dynamic behavior of a finite-sized elastic solid with multiple cavities and inclusions using BIEM

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The 2D elastodynamic problem is solved for a finite-size solid containing multiple cavities and/or elastic inclusions of any shape that are arranged in an arbitrary geometrical configuration. The dynamic load is a tensile traction field imposed along the sides of the finite-size solid matrix and under time-harmonic conditions. Furthermore, the cavity surfaces are either traction-free or internally pressurized, while the inclusions have elastic properties ranging from very weak to nearly rigid. The presence of all these heterogeneities within the elastic matrix gives rise to both wave scattering and stress concentration phenomena. Computation of the underlying kinematic and stress fields is carried out using the boundary integral equation method built on the frequency-dependent fundamental solutions of elastodynamics for a point load in an unbounded continuum. As a first step, a detailed validation study is performed by comparing the present results with existing analytical solutions and with numerical results reported in the literature. Following this, extensive numerical simulations reveal the dependence of the scattered wave fields and of the resulting dynamic stress concentration factors (SCF) on the shape, size, number and geometrical configuration of multiple cavities and/or inclusions in the finite elastic solid. The pronounced SCF values invariably (but not always) observed are attributed to multiple dynamic interactions between these heterogeneities that may either weaken or strengthen the background elastic matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BIEM:

Boundary integral equation method

FEM:

Finite element method

SCF:

Stress concentration factor

BVP:

Boundary value problem

BIE:

Boundary integral equation

BE:

Boundary element

DOF:

Degrees-of-freedom

References

  1. Mow C.C., Mente L.J.: Dynamic stresses and displacements around cylindrical discontinuities due to plane harmonic shear waves. J. Appl. Mech. 30, 598–604 (1963)

    Article  Google Scholar 

  2. Kung, G.C.S.: Dynamical stress concentration in an elastic plate. M. Sci. Thesis, Cornell University, Ithaca, New York (1964)

  3. Pao Y.H., Mow C.C.: Diffraction of Elastic Waves and Dynamic Stress Concentration. Crane Russak, New York (1971)

    Google Scholar 

  4. Achenbach J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  5. Miklowitz J.: Elastic Waves and Waveguides. North-Holland, Amsterdam (1984)

    Google Scholar 

  6. Hirose S.: Scattering from an elliptic crack by the time-domain boundary integral equation method. In: Brebbia, C.A, Connor, J.J. (eds) Advances in Boundary Elements: Stress Analysis, pp. 99–110. Springer, Berlin (1989)

    Google Scholar 

  7. Manolis G.D.: Elastic wave scattering around cavities in inhomogeneous continua by the BEM. J. Sound Vib. 266, 281–305 (2003)

    Article  MATH  Google Scholar 

  8. Meguid S.A., Wang X.D.: The dynamic interaction of a crack with a circular cavity under anti-plane loading. J. Mech. Phys. Solids 43, 1857–1874 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nakasone Y., Nishiyama H., Nojiri T.: Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes. Mater. Sci. Eng. A285, 229–238 (2000)

    Google Scholar 

  10. Zhang J., Katsube N.: A hybrid finite element method for heterogeneous materials with randomly dispersed elastic inclusions. Finite Elem. Anal. Des. 19, 45–55 (1995)

    Article  MATH  Google Scholar 

  11. Gong S.X., Meguid S.A.: Interacting circular inhomogeneities in plane elastostatics. Acta Mech. 99, 49–60 (1993)

    Article  MATH  Google Scholar 

  12. Ting K., Chen K.T., Yang W.S.: Applied alternating method to analyze the stress concentration around interacting multiple circular holess in an infinite domain. Int. J. Solids Struct. 36, 533–556 (1999)

    Article  MATH  Google Scholar 

  13. Squire V.A., Dixon T.W.: Scattering of flexural waves from a coated cylindrical anomaly in a thin plate. J. Sound Vib. 236, 367–373 (2000)

    Article  MATH  Google Scholar 

  14. Kratochvil, J., Becker, W.: Asymptotic analysis of stresses in an isotropic linear elastic plane or half-plane weakened by a finite number of holes. Arch. Appl. Mech. doi:10.1007/s00419-011-0587-z (2012)

  15. Kushch V., Shmegera S., Buryachenko V.: Elastic equilibrium of a half plane containing a finite array of elliptic inclusions. Int. J. Solids Struct. 43, 3459–3483 (2006)

    Article  MATH  Google Scholar 

  16. Wang J., Crouch S.L., Mogilevskaya S.G.: A complex boundary integral method for multiple circular holes in an infinite plane. Eng. Anal. Bound. Elem. 27, 789–802 (2003)

    Article  MATH  Google Scholar 

  17. Hu C., Fang X.Q., Huang W.H.: Multiple scattering of flexural waves in a semi-infinite thin plate with a cut-out. Int. J. Solids Struct. 44, 436–446 (2007)

    Article  MATH  Google Scholar 

  18. Lee W.M., Chen J.T.: Scattering of flexural wave in thin plate with multiple holes by using the null-field integral equation approach. Comput. Model. Eng. Sci. 37, 243–273 (2008)

    MathSciNet  Google Scholar 

  19. Ayatollahi M., Fariborz S.J., Ahmadi N.: Anti-plane elastodynamic analysis of planes with multiple defects. Appl. Math. Model. 33, 663–676 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu D., Gai B., Tao G.: Applications of the method of complex functions to dynamic stress concentrations. Wave Motion 4, 293–304 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Manolis G.D., Beskos D.E.: Dynamic stress concentration studies by boundary integrals and Laplace transform. Int. J. Numer. Methods Eng. 17, 573–599 (1981)

    Article  MATH  Google Scholar 

  22. Niwa Y., Hirose S., Kitahara M.: Application of the boundary integral equation method to transient response analysis of inclusions in a half-space. Wave Motion 8, 77–91 (1986)

    Article  MATH  Google Scholar 

  23. Kitahara M., Nakagawa K., Achenbach J.D.: Boundary-integral equation method for elastodynamic scattering. Comput. Mech. 5, 129–144 (1989)

    Article  MATH  Google Scholar 

  24. Providakis C.P., Sotiropoulos D.A., Beskos D.E.: BEM analysis of reduced dynamic stress concentration by multiple holes. Commun. Numer. Methods Eng. 9, 917–924 (1993)

    Article  MATH  Google Scholar 

  25. Greengard L., Helsing J.: On the numerical evaluation of elastostatic fields in locally isotropic two-dimensional composites. J. Mech. Phys. Solids 46, 1441–1462 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao S.W., Wang B.L., Ma X.R.: Scattering of elastic wave and dynamic stress concentrations in thin plate with a circular cavity. Eng. Mech. 18, 14–20 (2001)

    Google Scholar 

  27. Yao Z., Kong F., Zheng X.: Simulation of 2D elastic bodies with randomly distributed circular inclusions using the BEM. Electron. J. Bound. Elem. 1, 270–282 (2003)

    MathSciNet  Google Scholar 

  28. Rus G., Gallego R.: Boundary integral equation for inclusion and cavity shape sensitivity in harmonic elastodynamics. Eng. Anal. Bound. Elem. 29, 77–91 (2005)

    Article  MATH  Google Scholar 

  29. Leite L.G.S., Venturini W.S.: Accurate modelling of rigid and soft inclusions in 2D elastic solids by the boundary element method. Comput. Struct. 84, 1874–1881 (2006)

    Article  Google Scholar 

  30. Dravinski M., Yu M.C.: Scattering of plane harmonic SH waves by multiple inclusions. Geophys. J. Int. 186, 1331–1346 (2011)

    Article  Google Scholar 

  31. Zienkiewicz O.C., Kelly D.W., Bettess P.: The coupling of the finite element method and boundary solution problems. Int. J. Numer. Methods Eng. 11, 355–375 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Beer, G.: Implementation of combined boundary element finite element analysis with application in geomechanics. In: Banerjee, P.K., Watson, J.O. (eds.) Developments in Boundary Element Methods 4, Chap. 7, pp. 191–225. Applied Science Publishers, London (1986)

  33. Mogilevskaya S.G., Crouch S.L.: A Galerkin boundary integral method for multiple circular elastic inclusions. Int. J. Numer. Methods Eng. 52, 1069–1106 (2001)

    Article  MATH  Google Scholar 

  34. Mogilevskaya S.G., Crouch S.L.: A Galerkin boundary integral method for multiple circular elastic inclusions with homogeneously imperfect interfaces. Int. J. Solids Struct. 39, 4723–4746 (2002)

    Article  Google Scholar 

  35. Kong F., Yao Z., Zheng X.: BEM for simulation of a 2D elastic body with randomly distributed circular inclusions. Acta Mechanica Solida Sinika 15, 81–88 (2002)

    Google Scholar 

  36. Tan C.L., Gao Y.L., Afagh F.F.: Anisotropic stress analysis of inclusion problems using the boundary integral equation method. J Strain Anal. 27, 67–76 (1992)

    Article  Google Scholar 

  37. Dong C.Y., Lo S.H., Cheung Y.K.: Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium. Comput. Methods Appl. Mech. Eng. 192, 683–696 (2003)

    Article  MATH  Google Scholar 

  38. Dong C.Y.: The integral equation formulations of an infinite elastic medium containing inclusions, cracks and rigid lines. Eng. Fract. Mech. 75, 3952–3965 (2008)

    Article  Google Scholar 

  39. Venturini W.S.: Alternative formulations of the boundary element method for potential and elastic zoned problems. Eng. Anal. Bound. Elem. 9, 203–207 (1992)

    Article  Google Scholar 

  40. Dominguez J.: Boundary Elements in Dynamics. Elsevier, New York (1993)

    MATH  Google Scholar 

  41. MATLAB: The Language of Technical Computing, Version 7.9. The MathWorks, Inc., Natick, Massachusetts (2009)

  42. SAP 2000: Integrated Finite Element Analysis and Design of Structures, Version 14.0. Computers and Structures, Inc., Berkeley, California (2008)

  43. ANSYS Release 10.0. Structural Mechanics Package, Canonsburg, Pennsylvania (2009)

  44. Tsui C.P., Chen D.Z., Tang C.Y., Uskokovic P.S., Fan J.P., Xie X.L.: Prediction for debonding damage process and effective elastic properties of glass-bead filled modified polyphenylene oxide. Compos. Sci. Technol. 66, 1521–1531 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Manolis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvanova, S.L., Dineva, P.S. & Manolis, G.D. Dynamic behavior of a finite-sized elastic solid with multiple cavities and inclusions using BIEM. Acta Mech 224, 597–618 (2013). https://doi.org/10.1007/s00707-012-0759-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0759-0

Keywords

Navigation