Skip to main content
Log in

A hierarchy of avalanche models on arbitrary topography

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We use the non-Cartesian, topography-based equations of mass and momentum balance for gravity driven frictional flows of Luca et al. (Math. Mod. Meth. Appl. Sci. 19, 127–171 (2009)) to motivate a study on various approximations of avalanche models for single-phase granular materials. By introducing scaling approximations we develop a hierarchy of model equations which differ by degrees in shallowness, basal curvature, peculiarity of constitutive formulation (non-Newtonian viscous fluids, Savage–Hutter model) and velocity profile parametrization. An interesting result is that differences due to the constitutive behaviour are largely eliminated by scaling approximations. Emphasis is on avalanche flows; however, most equations presented here can be used in the dynamics of other thin films on arbitrary surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ancey C.: Plasticity and geophysical flows: a review. J. Non-Newtonian Fluid Mech. 142, 4–35 (2007). doi:10:1016/jnnfm.2006.05.005

    Article  MATH  Google Scholar 

  2. Berezin Yu.A., Spodareva L.A.: Slow motion of a granular layer on an inclined plane. J. Appl. Mech. Tech. Phys. 39, 261–264 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bouchut F., Westdickenberg M.: Gravity driven shallow water models for arbitrary topography. Comm. Math. Sci. 2, 359–389 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Bouchut F., Fernández-Nieto E.D., Mangeney A., Lagrée P.-Y.: On new erosion models of Savage–Hutter type for avalanches. Acta Mech. 199, 181–208 (2008)

    Article  MATH  Google Scholar 

  5. Coussot P., Piau J.-M.: On the behaviour of fine mud suspensions. Rheol. Acta 33, 175–184 (1994)

    Article  Google Scholar 

  6. De Kee D., Turcotte G.: Viscosity of biomaterials. Chem. Eng. Commun. 6, 273–282 (1980)

    Article  Google Scholar 

  7. De Toni S., Scotton P.: Two-dimensional mathematical and numerical model for the dynamics of granular avalanches. Cold Reg. Sci. Technol. 43, 36–48 (2005)

    Article  Google Scholar 

  8. Eglit M.E.: Some mathematical models of snow avalanches. In: Shahinpoor, M. (eds) Advances in the Mechanics and the Flow of Granular Materials, 1st edn., vol. II, pp. 577–588. Trans Tech Publications, Clausthal-Zellerfeld (1983)

    Google Scholar 

  9. Gray J.M.N.T., Tai Y.C.: On the inclusion of a velocity-dependent basal drag in avalanche models. Ann. Glaciol. 26, 277–280 (1998)

    Google Scholar 

  10. Gray J.M.N.T., Tai Y.C., Noelle S.: Shock waves, dead zones and particle free regions in rapid granular free surface flows. J. Fluid Mech. 491, 160–181 (2003)

    Article  MathSciNet  Google Scholar 

  11. Harbitz, C.B. (ed.): Snow avalanche modelling, Mapping and Warning in Europe (SAME), Report of the Fourth European Framework Programme: Environment and Climate, NGI, Norway (1998)

  12. Huang X., Garcia M.H.: A Herschel-Bulkley model for mud flow down a slope. J. Fluid. Mech. 374, 305–333 (1998)

    Article  MATH  Google Scholar 

  13. Hutter K., Wang Y., Pudasaini S.P.: The Savage–Hutter avalanche model: how far can it be pushed?. Phil. Trans. R. Soc. A 363, 1507–1528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Issler, D.: Terrain-curvature effects in depth-averaged flow models on arbitrary topography. Private communication (2007)

  15. Iverson R.M.: The physics of debris flows. Rev. Geophys. 35, 245–296 (1997)

    Article  Google Scholar 

  16. Luca I., Tai Y.C., Kuo C.Y.: Non-Cartesian topography based avalanche equations and approximations of gravity driven flows of ideal and viscous fluids. Math. Mod. Meth. Appl. Sci. 19, 127–171 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. McDougall S., Hungr O.: A model for the analysis of the rapid landslide motion across three dimensional terrain. Can. Geotech. J. 41, 1084–1097 (2004)

    Article  Google Scholar 

  18. McDougall S., Hungr O.: Dynamic modeling of entrainment in rapid landslides. Can. Geotech. J. 42, 1437–1448 (2005)

    Article  Google Scholar 

  19. Mendes P.R.S., Dutra E.S.S.: Viscosity function for yield-stress liquids. Appl. Rheol. 14, 296–302 (2004)

    Google Scholar 

  20. Ng C.-O., Mei C.C.: Roll waves on a shallow layer of mud modelled as a power law fluid. J. Fluid. Mech. 263, 151–183 (1994)

    Article  MATH  Google Scholar 

  21. Norem, H., Irgens, F., Schieldrop, B.: A continuum model for calculating snow avalanche velocities. In: Salm, B., Gubler, H.-U. (eds.) Avalanche Formation, Movement and Effects. Proceedings of Davos Symposium, September 1986. IAHS Publ No. 162, pp. 363–380. IAHS Press, Wallingford (1987)

  22. Papanastasiou T.C.: Flows of materials with yield. J. Rheol. 31, 385–404 (1987)

    Article  MATH  Google Scholar 

  23. Perazzo C.A., Gratton J.: Thin film of non-Newtonian fluid on an incline. Phys. Rev. E 67, 016307 (2003)

    Article  Google Scholar 

  24. Perla I.P., Cheng T.T., McClung D.M.: A two-parameter model of snow avalanche motion. J. Glaciol. 26, 197–207 (1980)

    Google Scholar 

  25. Pitman E.B., Le L.: A two-fluid model for avalanche and debris flows. Phil. Trans. R. Soc. A 363, 1573–1601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pudasaini S.P., Wang Y., Hutter K.: Rapid motions of free surface avalanches down curved and twisted channels and their numerical simulation. Phil. Trans. R. Soc. A 363, 1551–1571 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pudasaini S.P., Wang Y., Hutter K.: Modelling debris flows down general channels. Nat. Hazards Earth Syst. Sci. 5, 799–819 (2005)

    Article  Google Scholar 

  28. Pudasaini, S.P., Hsiau, S.-S., Wang, Y., Hutter, K.: Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions. Phys. Fluids 17 (2005)

  29. Pudasaini S.P., Hutter K.: Avalanche Dynamics. Springer, Heidelberg (2007)

    Google Scholar 

  30. Salm B.: Contribution to avalanche dynamics. IAHS AISH Publ. 69, 199–214 (1966)

    Google Scholar 

  31. Savage S.B., Hutter K.: The motion of a finite mass of granular material down a rough incline. J. Fluid. Mech. 199, 177–215 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tai Y.C., Kuo C.Y.: A new model of granular flows over general topography with erosion and deposition. Acta Mech. 199, 71–96 (2008)

    Article  MATH  Google Scholar 

  33. Voellmy, A.: Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73, 159–162, 212–217, 246–249, 280–285 (1955)

  34. Wang, Y.-Y., Jan, C.-D, Yan, B.-Y.: Debris flow structure and rheology (in Chinese). National Natural Science Foundation of China (2000)

  35. Zhu H., Kim Y.D., De Kee D.: Non-Newtonian fluids with a yield stress. J. Non-Newtonian Fluid Mech. 129, 177–181 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hutter.

Additional information

I. Luca is on leave from Department of Mathematics II, University Politehnica of Bucharest, Splaiul Independentei 313, 79590 Bucharest, Romania, E-mail: iolucaro@yahoo.com.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luca, I., Hutter, K., Tai, Y.C. et al. A hierarchy of avalanche models on arbitrary topography. Acta Mech 205, 121–149 (2009). https://doi.org/10.1007/s00707-009-0165-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0165-4

Keywords

Navigation