Skip to main content

Advertisement

Log in

Appraisal of energy recovering sub-grid scale models for large-eddy simulation of turbulent dispersed flows

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Current capabilities of Large-Eddy Simulation (LES) in Eulerian–Lagrangian studies of dispersed flows are limited by the modeling of the Sub-Grid Scale (SGS) turbulence effects on particle dynamics. These effects should be taken into account in order to reproduce accurately the physics of particle dispersion since the LES cut-off filter removes both energy and flow structures from the turbulent flow field. In this paper, we examine the possibility of including explicitly SGS effects by incorporating ad hoc closure models in the Lagrangian equations of particle motion. Specifically, we consider candidate models based on fractal interpolation and approximate deconvolution techniques. Results show that, even when closure models are able to recover the fraction of SGS turbulent kinetic energy for the fluid velocity field (not resolved in LES), prediction of local segregation and, in turn, of near-wall accumulation may still be inaccurate. This failure indicates that reconstructing the correct amount of fluid and particle velocity fluctuations is not enough to reproduce the effect of SGS turbulence on particle near-wall accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang L.P., Riley M.R.: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 27–68 (1993)

    Article  Google Scholar 

  2. Bec J., Biferale L., Cencini M., Lanotte A., Musacchio S., Toschi F.: Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98, 084502 (2007)

    Article  Google Scholar 

  3. Eaton J.K., Fessler J.R.: Preferential concentration of particles by turbulence. Int. J. Multiphase Flow 20, 169–209 (1994)

    Article  MATH  Google Scholar 

  4. Rouson D.W., Eaton J.K.: On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149–169 (2001)

    Article  MATH  Google Scholar 

  5. Brooke J.W., Kontomaris K., Hanratty T.J., McLaughlin J.B.: Turbulent deposition and trapping of aerosols at a wall. Phys. Fluids A 4, 825–834 (1992)

    Article  Google Scholar 

  6. Marchioli C., Soldati A.: Mechanisms for particle transfer and segregation in turbulent boundary layer. J. Fluid Mech. 468, 283–315 (2002)

    Article  MATH  Google Scholar 

  7. García M., Lopez F., Niño Y.: Characterization of near-bed coherent structures in turbulent open channel flow using synchronized high-speed video and hot-film measurements. Exp. Fluids 19, 16–28 (1995)

    Article  Google Scholar 

  8. Kaftori D., Hetsroni G., Banerjee S.: Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment. Phys. Fluids 7, 1095–1106 (1995)

    Article  Google Scholar 

  9. Adrian R.J.: Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301 (2007)

    Article  Google Scholar 

  10. Soldati A.: Particles turbulence interactions in boundary layers. Z. Angew. Math. Mech. 85, 683–699 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Caporaloni M., Tampieri F., Trombetti F., Vittori O.: Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32, 565–568 (1975)

    Article  Google Scholar 

  12. Reeks M.W.: The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14, 729–739 (1983)

    Article  Google Scholar 

  13. Young J.B., Hanratty T.J.: Optical studies on the turbulent motion of solid particles in a pipe flow. J. Fluid Mech. 231, 665–668 (1991)

    Article  MATH  Google Scholar 

  14. Marchioli C., Salvetti M.V., Soldati A.: Some issues concerning Large-Eddy Simulation of inertial particle dispersion in turbulent bounded flows. Phys. Fluids 20, 040603 (2008)

    Article  Google Scholar 

  15. Février P., Simonin O., Squires K.D.: Partitioning of particle velocities in gas–solid turbulent flows into a continuous field and a spatially-uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid Mech. 533, 1–46 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kuerten J.G.M.: Subgrid modeling in particle-laden channel flow. Phys. Fluids 18, 025108 (2006)

    Article  Google Scholar 

  17. Kuerten J.G.M., Vreman A.W.: Can turbophoresis be predicted by large-eddy simulation?. Phys. Fluids 17, 011701 (2005)

    Article  Google Scholar 

  18. Wang Q., Squires K.D.: Large eddy simulation of particle deposition in a vertical turbulent channel flow. Int. J. Multiphase Flow 22, 667–683 (1996)

    Article  MATH  Google Scholar 

  19. Tian L., Ahmadi G.: Particle deposition in turbulent duct flows—comparisons of different model predictions. J. Aerosol Sci. 38, 377–397 (2007)

    Article  Google Scholar 

  20. Marchioli C., Giusti A., Salvetti M.V., Soldati A.: Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow. Int. J. Multiphase Flow 29, 1017–1038 (2003)

    Article  MATH  Google Scholar 

  21. Uijttewaal W.S.J., Oliemans R.W.A.: Particle dispersion and deposition in direct numerical and large eddy simulations of vertical pipe flows. Phys. Fluids 8, 2590–2604 (1996)

    Article  MATH  Google Scholar 

  22. Fede P., Simonin O.: Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys. Fluids 18, 045103 (2006)

    Article  Google Scholar 

  23. Reza Keshevarzi A., Nagi Ziaei A., Homayoun E., Shirvani A.: Fractal-Markovian scaling of turbulent bursting processes in open channel flows. Chaos Solitons Fractals 25, 307–318 (2005)

    Article  Google Scholar 

  24. Scotti A., Meneveau C.: A fractal model for large eddy simulation of turbulent flow. Phys. D 127, 198–232 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shotorban B., Mashayek F.: Modeling subgrid-scale effetcs on particles by approximate deconvolution. Phys. Fluids 17, 081701 (2005)

    Article  Google Scholar 

  26. Shotorban B., Zhang K.K.Q., Mashayek F.: Improvement of particle concentration prediction by defiltering. Int. J. Heat Mass Tran. 50, 3728–3739 (2007)

    Article  MATH  Google Scholar 

  27. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3, 1760–1765 (1991), Erratum, Phys. Fluids 3, 3128 (1991)

    Google Scholar 

  28. Elghobashi S.E., Truesdell G.C.: Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655–700 (1992)

    Article  Google Scholar 

  29. Crowe C., Sommerfeld M., Tsuji T.: Multiphase Flows with Droplets and Particles. CRC Press, New York (1998)

    Google Scholar 

  30. Lam K., Banerjee S.: Streak formation in a bounded turbulent-flow. Phys. Fluids A 4, 306–326 (1992)

    Article  MATH  Google Scholar 

  31. Soldati A., Banerjee S.: Turbulence modification by large-scale organized electrohydrodynamic flows. Phys. Fluids 10, 1742–1756 (1998)

    Article  Google Scholar 

  32. Marchioli C., Picciotto M., Soldati A.: Particle dispersion and wall-dependent fluid scales in turbulent bounded flow: implications for local equilibrium models. J. Turbulence 27, 1–11 (2006)

    Article  Google Scholar 

  33. Marchioli, C., Soldati, A., Kuerten, J.G.M., Arcen, B., Tanière, A., Goldensoph, G., Squires, K.D., Cargnelutti, M.F., Portela, L.M.: Statistics of particle dispersion in Direct Numerical Simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Int. J. Multiphase Flow 34 (2008). doi:10.1016/j.ijmultiphaseflow.2008.01.009

  34. Salvetti M.V., Marchioli C., Soldati A.: On the closure of particle motion equations in large-eddy simulation. In: Lamballais, E., Friedrich, R., Geurts, B.J., Metais, O.(eds) Direct and Large-Eddy Simulation, vol. 6, pp. 311–318. Springer, Netherlands (2006)

    Chapter  Google Scholar 

  35. Stolz P., Adams N.A., Kleiser L.: An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13, 997–1015 (2001)

    Article  Google Scholar 

  36. Cousins, L.B., Hewitt, G.F.: Liquid phase mass transfer in annular two-phase flow. UKAEA Report, AERE-R 5657 (1968)

  37. Guingo M., Minier J.-P.: A stochastic model of coherent structures for particle deposition in turbulent flows. Phys. Fluids 20, 053303 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Soldati.

Additional information

Dedicated to Professor Wilhelm Schneider on the occasion of his 70th birthday

It is our great pleasure to take part in this Festschrift Issue dedicated to Professor Wilhelm Schneider on the occasion of his 70th birthday. Happy birthday Willi! We wish you many more fruitful and happy years with the same enthusiasm for science and knowledge you always had.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchioli, C., Salvetti, M.V. & Soldati, A. Appraisal of energy recovering sub-grid scale models for large-eddy simulation of turbulent dispersed flows. Acta Mech 201, 277–296 (2008). https://doi.org/10.1007/s00707-008-0066-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0066-y

Keywords

Navigation