Skip to main content
Log in

Characterization of a new phage, termed ϕA318, which is specific for Vibrio alginolyticus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Vibrio alginolyticus is an opportunistic pathogen of animals and humans; its related strains can also produce tetrodotoxin and hemolysins. A new phage, ϕA318, which lysed its host V. alginolyticus with high efficiency, was characterized. The burst size of ϕA318 in V. alginolyticus was 72 PFU/bacterium at an MOI of 1 at room temperature; the plaque size was as large as 5 mm in diameter. Electron microscopy (EM) of the phage particles revealed a 50- to 55-nm isomorphous icosahedral head with a 12-nm non-contractile tail, similar to the T7-like phages of the family Podoviridae. Phylogenetic analysis based on complete sequences of the DNA-directed RNA polymerase gene revealed that ϕA318 had 28-47% amino acid identity to enterobacteria phages T7 and SP6, and other Vibrio phages, and the phylogenetic distance suggested that ϕA318 could be classified as a new T7-like bacteriophage. Nevertheless, several motifs in the ϕA318 phage RNA polymerase were highly conserved, including DFRGR (T7-421 motif), DG (T7-537 motif), PSEKPQDIYGAVS (T7-563 motif), RSMTKKPVMTL PYGS (T7-627 motif), and HDS (T7-811 motif). Genetic analysis indicated that phage ϕA318 is not a thermostable direct hemolysin producer. The results suggest that the MOI should be higher than 0.1 to prevent the chance of hemolysin production by the bacteria before they are lysed by the phage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baffone W, Citterio B, Vittoria E, Casaroli A, Pianetti A, Campana A, Bruscolini F (2001) Determination of several potential virulence factors in Vibrio spp. isolated from seawater. Food Microbiol 18:479–488

    Article  CAS  Google Scholar 

  2. Farto R, Pérez MJ, Briera AF, Nieto TP (2002) Purification and partial characterisation of a fish lethal extracellular protease from Vibrio pelagius. Vet Microbiol 89(2–3):181–194

    Article  PubMed  CAS  Google Scholar 

  3. Natrah FMI, Ruwandeepika HAD, Pawar S, Karunasagar I, Sorgeloos P, Bossier P, Defoirdt T (2011) Regulation of virulence factors by quorum sensing in Vibrio harveyi. Vet Microbiol 154(1–2):124–129

    Article  PubMed  CAS  Google Scholar 

  4. Lee KK (1995) Pathogenesis studies on Vibrio alginolyticus in the grouper, Epinephelus malabaricus Bloch et Schneider. Microb Pathog 19:39–48

    Article  PubMed  CAS  Google Scholar 

  5. Colorni A, Paperna I, Gordin H (1981) Bacterial infections in gilt-head sea bream Sparus aurata cultured at Elat. Aquaculture 23:257–267

    Article  Google Scholar 

  6. Paperna I (1984) Review of diseases affecting cultured Sparus aurata and Dicentrarchus labrax. In: Barnabé G, Billard R (eds) L’aquaculture du bar et des sparides. INRA Publisher, Paris, pp 465–482

    Google Scholar 

  7. Balebona MC, Andreu MJ, Bordas MA, Zorrilla I, Moriñigo MA, Borrego JJ (1998) Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.). Appl Environ Microbiol 64(11):4269–4275

    PubMed  CAS  Google Scholar 

  8. Simidu U, Noguchi T, Hwang DF, Shida Y, Hashimoto K (1987) Marine bacteria which produce tetrodotoxin. Appl Environ Microbol 53(7):1714–1715

    CAS  Google Scholar 

  9. Balebona MC, Krovacek K, Moriñigo MA, Mansson I, Faris A, Borrego JJ (1998) Neurotoxic effect on two fish species and a PC12 cell line of the supernate of Vibrio alginolyticus and Vibrio anguillarum. Vet Microbiol 63(1):61–69

    Article  PubMed  CAS  Google Scholar 

  10. Balcázar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114(3–4):173–186

    Article  PubMed  Google Scholar 

  11. Kahla-Nakbi AB, Chaieb K, Besbes A, Zmantar T, Bakhrouf A (2006) Virulence and enterobacterial repetitive intergenic consensus PCR of Vibrio alginolyticus strains isolated from Tunisian cultured gilthead sea bream and sea bass outbreaks. Vet Microbiol 117(2–4):321–327

    Article  PubMed  Google Scholar 

  12. Efrony R, Atad I, Rosenberg E (2009) Phage therapy of coral white plague disease: properties of phage BA3. Curr Microbiol 58(2):139–145

    Article  PubMed  CAS  Google Scholar 

  13. Schwarz JR, Colwell RR (1974) Effect of hydrostatic pressure on growth and viability of Vibrio parahaemolyticus. Appl Microbiol 28:977–981

    PubMed  CAS  Google Scholar 

  14. Lu M-W, Liu W, Lin C-S (2003) Infection competition against grouper nervous necrosis virus by virus-like particles produced in Escherichia coli. J Gen Virol 84:1577–1582

    Article  PubMed  CAS  Google Scholar 

  15. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  16. Shafia F, Thompson TL (1964) Calcium ion requirement for proliferation of bacteriophage Phi Mu-4. J Bacteriol 88:293–296

    PubMed  CAS  Google Scholar 

  17. Adams MH (1959) Bacteriophages. Interscience, New York

    Google Scholar 

  18. Mitra S, Basu S (1968) Some biophysical properties of a vibriophage and its DNA. Biochim Biophys Acta 155(1):143–149

    PubMed  CAS  Google Scholar 

  19. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  20. Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  21. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  22. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  23. Yanagihara I, Nakahira K, Yamane T, Kaieda S, Mayanagi K, Hamada D, Fukui T, Ohnishi K, Kajiyama S, Shimizu T, Sato M, Ikegami T, Ikeguchi M, Honda T, Hashimoto H (2010) Structure and functional characterization of Vibrio parahaemolyticus thermostable direct hemolysin. J Biol Chem 285(21):16267–16274

    Article  PubMed  CAS  Google Scholar 

  24. Bradley DE (1967) Ultrastructure of bacteriophages and bacteriocins. Bacteriol Rev 31(4):230–314

    PubMed  CAS  Google Scholar 

  25. Stroud RM, Serwer P, Ross MJ (1981) Assembly of bacteriophage T7: dimensions of the bacteriophage and its capsids. Biophys J 36:743–757

    Article  PubMed  CAS  Google Scholar 

  26. Sillankorva S, Neubauer P, Azeredo J (2008) Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens. BMC Biotechnol 8:80–91

    Article  PubMed  Google Scholar 

  27. Issinger OG, Falk H (1976) Comparative studies on the structural proteins of T3 and T7 phages. Arch Virol 52:217–231

    Article  PubMed  CAS  Google Scholar 

  28. Kemp P, Garcia LR, Molineux IJ (2005) Changes in bacteriophage T7 virion structure at the initiation of infection. Virology 340:307–317

    Article  PubMed  CAS  Google Scholar 

  29. Cheetham GM, Steitz TA (1999) Structure of a transcribing T7 RNA polymerase initiation complex. Science 286(5448):2305–2309

    Article  PubMed  CAS  Google Scholar 

  30. Imburgio D, Anikin M, McAllister WT (2002) Effects of substitutions in a conserved DX2GR sequence motif, found in many DNA-dependent nucleotide polymerases, on transcription by T7 RNA polymerase. J Mol Biol 319:37–51

    Article  PubMed  CAS  Google Scholar 

  31. Tunitskaya VL, Kochetkov SN (2002) Structural–functional analysis of bacteriophage T7 RNA polymerase. Biochemistry (Moscow) 67(10):1124–1135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research fund is partially supported by grants from the National Science Council, Taiwan (NSC96-2313-B-110-002-MY3 and NSC99-2313-B-110-002-MY3), and the Ministry of Education, Taiwan (NSYSU95-99C031701; the second term of Top University Program: NSYSU 00C030205 and NCHU 100-S05-09) under the ATU plan. We thank Professor Long-Huw Lee (National Chung-Hsing University) as the grant organizer of the intercampus ATU plan. Also we appreciate Yu-Tin Liu for helping with gel preparation, and Kenneth B. Lin and Dr. Simon White for comments and editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-Shing Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YR., Chiu, CW., Chang, FY. et al. Characterization of a new phage, termed ϕA318, which is specific for Vibrio alginolyticus . Arch Virol 157, 917–926 (2012). https://doi.org/10.1007/s00705-012-1244-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1244-8

Keywords

Navigation