Skip to main content

Advertisement

Log in

Targeting of the pedunculopontine nucleus by an MRI-guided approach: a cadaver study

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Laboratory evidence suggests that the pedunculopontine nucleus (PPN) plays a central role in the initiation and maintenance of gait. Translational research has led to reports on deep brain stimulation (DBS) of the rostral brainstem in parkinsonian patients. However, initial clinical results appear to be rather variable. Possible factors include patient selection and the wide variability in anatomical location of implanted electrodes. Clinical studies on PPN DBS efficacy would, therefore, benefit from an accurate and reproducible method of stereotactic localization of the nucleus. The present study evaluates the anatomical accuracy of a specific protocol for MRI-guided stereotactic targeting of the PPN in a human cadaver. Imaging at 1.5 and 9.4 T confirmed electrode location in the intended region as defined anatomically by the surrounding fiber tracts. The spatial relations of each electrode track to the nucleus were explored by subsequent histological examination. This confirmed that the neuropil surrounding each electrode track contained scattered large neurons morphologically consistent with those of the subnucleus dissipatus and compactus of the PPN. The results support the accuracy of the described specific MR imaging protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cooper IS (1969) Involuntary movement disorders; foreword by Macdonald Critchley; medical artist Mary Lorene; medical photographer Rosemarie Spitaleri. Hoeber, New York

    Google Scholar 

  • Counelis GJ, Simuni T, Forman MS, Jaggi JL, Trojanowski JQ, Baltuch GH (2003) Bilateral subthalamic nucleus deep brain stimulation for advanced PD: correlation of intraoperative MER and postoperative MRI with neuropathological findings. Mov Disord 18(9):1062–1065. doi:10.1002/mds.10489

    Article  PubMed  Google Scholar 

  • Deep-Brain Stimulation for Parkinson’s Disease Study Group (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345(13):956–963

    Google Scholar 

  • DiLorenzo DJ, Jankovic J, Simpson RK, Takei H, Powell SZ (2010) Long-term deep brain stimulation for essential tremor: 12-year clinicopathologic follow-up. Mov Disord 25(2):232–238. doi:10.1002/mds.22935

    Article  PubMed  Google Scholar 

  • Elias WJ, Sansur CA, Frysinger RC (2009) Sulcal and ventricular trajectories in stereotactic surgery. J Neurosurg 110(2):201–207. doi:10.3171/2008.7.17625

    Article  PubMed  Google Scholar 

  • Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas JF, Benabid AL, Chabardes S, Pollak P (2009) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain. doi:10.1093/brain/awp229

  • Foltynie T, Zrinzo L, Martinez-Torres I, Tripoliti E, Petersen E, Holl E, Aviles-Olmos I, Jahanshahi M, Hariz M, Limousin P (2010) MRI-guided STN DBS in Parkinson’s disease without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp.2010.205542

  • Galati S, Scarnati E, Mazzone P, Stanzione P, Stefani A (2008) Deep brain stimulation promotes excitation and inhibition in subthalamic nucleus in Parkinson’s disease. Neuroreport 19(6):661–666. doi:10.1097/WNR.0b013e3282fb78af

    Article  PubMed  Google Scholar 

  • Garcia-Rill E, Houser CR, Skinner RD, Smith W, Woodward DJ (1987) Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Res Bull 18(6):731–738

    Article  PubMed  CAS  Google Scholar 

  • Gaynor LM, Kuhn AA, Dileone M, Litvak V, Eusebio A, Pogosyan A, Androulidakis AG, Tisch S, Limousin P, Insola A, Mazzone P, Di Lazzaro V, Brown P (2008) Suppression of beta oscillations in the subthalamic nucleus following cortical stimulation in humans. Eur J Neurosci 28(8):1686–1695. doi:10.1111/j.1460-9568.2008.06363.x

    Article  PubMed  Google Scholar 

  • Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL (2006) Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov Disord 21(Suppl 14):S259–S283. doi:10.1002/mds.20960

    Article  PubMed  Google Scholar 

  • Hariz MI (2002) Safety and risk of microelectrode recording in surgery for movement disorders. Stereotact Funct Neurosurg 78(3–4):146–157. doi:10.1159/000068960

    Article  PubMed  Google Scholar 

  • Hirabayashi H, Tengvar M, Hariz MI (2002) Stereotactic imaging of the pallidal target. Mov Disord 17(Suppl 3):S130–S134. doi:10.1002/mds.10154

    Article  PubMed  Google Scholar 

  • Holl EM, Petersen EA, Foltynie T, Martinez-Torres I, Limousin P, Hariz MI, Zrinzo L (2010) Improving targeting in image-guided frame-based deep brain stimulation. Neurosurgery 67(2 Suppl Operative):437–447. doi:10.1227/NEU.0b013e3181f7422a

    PubMed  Google Scholar 

  • Kleiner-Fisman G, Fisman DN, Sime E, Saint-Cyr JA, Lozano AM, Lang AE (2003) Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J Neurosurg 99(3):489–495

    Article  PubMed  Google Scholar 

  • Kojima J, Yamaji Y, Matsumura M, Nambu A, Inase M, Tokuno H, Takada M, Imai H (1997) Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey. Neurosci Lett 226(2):111–114. S0304-3940(97)00254-1[pii]

    Article  PubMed  CAS  Google Scholar 

  • Kuroda R, Nakatani J, Yamada Y, Yorimae A, Kitano M (1991) Location of a DBS-electrode in lateral thalamus for deafferentation pain: an autopsy case report. Acta Neurochir Suppl (Wien) 52:140–142

    CAS  Google Scholar 

  • Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 16(17):1877–1881. 00001756-200511280-00002[pii]

    Article  PubMed  Google Scholar 

  • Mazzone P, Sposato S, Insola A, Dilazzaro V, Scarnati E (2008) Stereotactic surgery of nucleus tegmenti pedunculopontine. Br J Neurosurg 22(Suppl 1):S33–S40. doi:10.1080/02688690802448327

    Article  PubMed  Google Scholar 

  • Mazzone P, Insola A, Sposato S, Scarnati E (2009) The deep brain stimulation of the pedunculopontine tegmental nucleus. Neuromodulation 12(3):191–204

    Article  Google Scholar 

  • McClelland S 3rd, Vonsattel JP, Garcia RE, Amaya MD, Winfield LM, Pullman SL, Yu Q, Fahn S, Ford B, Goodman RR (2007) Relationship of clinical efficacy to postmortem-determined anatomic subthalamic stimulation in Parkinson syndrome. Clin Neuropathol 26(6):267–275

    PubMed  Google Scholar 

  • Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD, Lozano AM (2009) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain. doi:10.1093/brain/awp261

  • Munro-Davies L, Winter J, Aziz TZ, Stein J (2001) Kainate acid lesions of the pedunculopontine region in the normal behaving primate. Mov Disord 16(1):150–151

    Article  PubMed  CAS  Google Scholar 

  • Nandi D, Jenkinson N, Stein J, Aziz T (2008) The pedunculopontine nucleus in Parkinson’s disease: primate studies. Br J Neurosurg 22(Suppl 1):S4–S8. doi:10.1080/02688690802448350

    Article  PubMed  Google Scholar 

  • Olszewski J, Baxter D (1982) Cytoarchitecture of the human brain stem. Karger

  • Ostrem JL, Christine CW, Glass GA, Schrock LE, Starr PA (2010) Pedunculopontine nucleus deep brain stimulation in a patient with primary progressive freezing gait disorder. Stereotact Funct Neurosurg 88(1):51–55. doi:10.1159/000268742

    Article  PubMed  Google Scholar 

  • Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123(Pt 9):1767–1783

    Article  PubMed  Google Scholar 

  • Petersen EA, Holl EM, Martinez-Torres I, Foltynie T, Limousin P, Hariz MI, Zrinzo L (2010) Minimizing brain shift in stereotactic functional neurosurgery. Neurosurgery 67 (3 Suppl Operative):ons213–ons221 (discussion ons221). doi:10.1227/01.NEU.0000380991.23444.08

  • Pierantozzi M, Palmieri MG, Galati S, Stanzione P, Peppe A, Tropepi D, Brusa L, Pisani A, Moschella V, Marciani MG, Mazzone P, Stefani A (2008) Pedunculopontine nucleus deep brain stimulation changes spinal cord excitability in Parkinson’s disease patients. J Neural Transm 115(5):731–735. doi:10.1007/s00702-007-0001-8

    Article  PubMed  Google Scholar 

  • Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 16(17):1883–1887. 00001756-200511280-00003[pii]

    Article  PubMed  Google Scholar 

  • Quester R, Schroder R (1997) The shrinkage of the human brain stem during formalin fixation and embedding in paraffin. J Neurosci Methods 75(1):81–89. S0165-0270(97)00050-2[pii]

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Oroz MC, Rodriguez M, Leiva C, Rodriguez-Palmero M, Nieto J, Garcia-Garcia D, Luis Zubieta J, Cardiel C, Obeso JA (2008) Neuronal activity of the red nucleus in Parkinson’s disease. Mov Disord 23(6):908–911. doi:10.1002/mds.22000

    Article  PubMed  Google Scholar 

  • Romigi A, Placidi F, Peppe A, Pierantozzi M, Izzi F, Brusa L, Galati S, Moschella V, Marciani MG, Mazzone P, Stanzione P, Stefani A (2008) Pedunculopontine nucleus stimulation influences REM sleep in Parkinson’s disease. Eur J Neurol 15(7):e64–e65. doi:10.1111/j.1468-1331.2008.02167.x

    Article  PubMed  CAS  Google Scholar 

  • Schiff SJ, Dunagan BK, Worth RM (2002) Failure of single-unit neuronal activity to differentiate globus pallidus internus and externus in Parkinson disease. J Neurosurg 97(1):119–128. doi:10.3171/jns.2002.97.1.0119

    Article  PubMed  Google Scholar 

  • Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130(Pt 6):1596–1607. doi:10.1093/brain/awl346

    Article  PubMed  Google Scholar 

  • Van Horn G, Hassenbusch SJ, Zouridakis G, Mullani NA, Wilde MC, Papanicolaou AC (2001) Pallidotomy: a comparison of responders and nonresponders. Neurosurgery 48(2):263–271 (discussion 271–263)

    PubMed  Google Scholar 

  • Yelnik J (2007) PPN or PPD, what is the target for deep brain stimulation in Parkinson’s disease? Brain 130 (Pt 9):e79 (author reply e80). doi:10.1093/brain/awm138

  • Zanini S, Moschella V, Stefani A, Peppe A, Pierantozzi M, Galati S, Costa A, Mazzone P, Stanzione P (2009) Grammar improvement following deep brain stimulation of the subthalamic and the pedunculopontine nuclei in advanced Parkinson’s disease: a pilot study. Parkinsonism Relat Disord 15(8):606–609. doi:10.1016/j.parkreldis.2008.12.003

    Article  PubMed  Google Scholar 

  • Zrinzo L (2010) The role of imaging in the surgical treatment of movement disorders. Neuroimaging Clin N Am 20(1):125–140. doi:10.1016/j.nic.2009.08.002

    Article  PubMed  Google Scholar 

  • Zrinzo L, Zrinzo LV, Hariz M (2007) The pedunculopontine and peripeduncular nuclei: a tale of two structures. Brain 130 (Pt 6):e73 (author reply e74). doi:10.1093/brain/awm079

  • Zrinzo L, Zrinzo LV, Tisch S, Limousin PD, Yousry TA, Afshar F, Hariz MI (2008) Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 131(Pt 6):1588–1598. doi:10.1093/brain/awn075

    Article  PubMed  Google Scholar 

  • Zrinzo L, van Hulzen AL, Gorgulho AA, Limousin P, Staal MJ, De Salles AA, Hariz MI (2009) Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation. J Neurosurg. doi:10.3171/2008.12.JNS08885

Download references

Acknowledgments

This work was undertaken at UCL/UCLH and was partly funded by the Department of Health NIHR Biomedical Research Centers funding scheme. The Unit of Functional Neurosurgery, Queen Square, London is supported by the Parkinson’s Appeal. MIH is supported by the Parkinson’s disease society of Sweden. JH is supported by the Reta Lila Weston Institute for Neurological Studies. JH and TR are supported by the Alzheimer’s Research Trust, the Multiple System Atrophy Trust, the Progressive Supranuclear Palsy (Europe) Association and Brain Net Europe. LAM is supported by a Grant from the PSP (Europe) Association. We wish to acknowledge the support of Professor Marie-Therese Camilleri-Podestà and Dr Pierre Schembri Wismayer from the Department of Anatomy, Genetics and Cell Biology, University of Malta and of Mr Joe Castillo from the Radiology Department, Mater Dei Hospital, Malta. We are grateful to Medtronic for supplying the electrodes and planning software and to Elekta for providing a Leksell frame for the duration of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludvic Zrinzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zrinzo, L., Zrinzo, L.V., Massey, L.A. et al. Targeting of the pedunculopontine nucleus by an MRI-guided approach: a cadaver study. J Neural Transm 118, 1487–1495 (2011). https://doi.org/10.1007/s00702-011-0639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-011-0639-0

Keywords

Navigation