Skip to main content

Advertisement

Log in

Iron-chelating backbone coupled with monoamine oxidase inhibitory moiety as novel pluripotential therapeutic agents for Alzheimer’s disease: a tribute to Moussa Youdim

  • Basic Neurosciences, Genetics and Immunology - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

It is for these authors a great privilege to dedicate this review article to Moussa Youdim, who is one of the most imperative pharmacologists and pioneer investigators in the search and development of novel therapeutics for neurodegenerative diseases. 40 years ago, Moussa Youdim has started studying brain iron, catecholamine receptor and monoamine oxidase (MAO)-A and -B functions. Although Moussa Youdim succeeded in exploring the novel anti-Parkinsonian, selective MAO-B inhibitor drug, rasagiline (Azilect, Teva Pharmaceutical Co.), he did not stop searching for superior therapeutic approaches for neurodegenerative disorders. To date, Moussa Youdim and his research group are designing and synthesizing pluripotential drug candidates possessing diverse pharmacological properties that can act on multiple targets and pathological features ascribed to Parkinson’s disease, Alzheimer’s disease (AD) and amyotrophic lateral sclerosis. One such example is the multimodal non-toxic, brain-permeable iron-chelating compound, M30 (5-[N-methyl-N-propargylaminomethyl]-8-hydroxyquinoline), which amalgamates the propargyl moiety of rasagiline with the backbone of the potent iron chelator, VK28. This review discusses the multiple effects of several leading compounds of this series, concerning their neuroprotective/neurorestorative molecular mechanisms in vivo and in vitro, with a special focus on the pathological features ascribed to AD, including antioxidant and iron chelating activities, regulation of amyloid precursor protein and amyloid β peptide expression processing, activation of pro-survival signaling pathways and regulation of cell cycle and neurite outgrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akao Y, Maruyama W, Shimizu S, Yi H, Nakagawa Y, Shamoto-Nagai M, Youdim MB, Tsujimoto Y, Naoi M (2002) Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. J Neurochem 82:913–923

    Article  PubMed  CAS  Google Scholar 

  • Altamura S, Muckenthaler MU (2009) Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J Alzheimers Dis 16:879–895

    PubMed  Google Scholar 

  • Amit T, Avramovich-Tirosh Y, Youdim MB, Mandel S (2008) Targeting multiple Alzheimer’s disease etiologies with multimodal neuroprotective and neurorestorative iron chelators. Faseb J 22:1296–1305

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Brückner MK, Mosch B, Lösche A (2010) Selective cell death of hyperploid neurons in Alzheimer’s disease. Am J Pathol 177(1):15–20

    Google Scholar 

  • Atamna H, Frey WH II (2004) A role for heme in Alzheimer’s disease: heme binds amyloid beta and has altered metabolism. Proc Natl Acad Sci USA 101:11153–11158

    Article  PubMed  CAS  Google Scholar 

  • Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NM, Romano DM, Hartshorn MA, Tanzi RE, Bush AI (1998) Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 273:12817–12826

    Article  PubMed  CAS  Google Scholar 

  • Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI (2000) Characterization of copper interactions with Alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta 1–42. J Neurochem 75:1219–1233

    Article  PubMed  CAS  Google Scholar 

  • Atwood CS, Obrenovich ME, Liu T, Chan H, Perry G, Smith MA, Martins RN (2003) Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. Brain Res Brain Res Rev 43:1–16

    Article  PubMed  CAS  Google Scholar 

  • Avramovich-Tirosh Y, Amit T, Bar-Am O, Zheng H, Fridkin M, Youdim MB (2007a) Therapeutic targets and potential of the novel brain-permeable multifunctional iron chelator-monoamine oxidase inhibitor drug, M-30, for the treatment of Alzheimer’s disease. J Neurochem 100:490–502

    Article  PubMed  CAS  Google Scholar 

  • Avramovich-Tirosh Y, Reznichenko L, Mit T, Zheng H, Fridkin M, Weinreb O, Mandel S, Youdim MB (2007b) Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable iron- chelating- antioxidants, M-30 and green tea polyphenol, EGCG. Curr Alzheimer Res 4:403–411

    Article  PubMed  CAS  Google Scholar 

  • Avramovich-Tirosh Y, Amit T, Bar-Am O, Weinreb O, Youdim MB (2008) Physiological and pathological aspects of Abeta in iron homeostasis via 5′UTR in the APP mRNA and the therapeutic use of iron-chelators. BMC Neurosci 9(Suppl 2):1–8

    Article  CAS  Google Scholar 

  • Avramovich-Tirosh Y, Bar-Am O, Amit T, Youdim MB, Weinreb O (2010) Up-regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-target genes in cortical neurons by the novel multifunctional iron chelator anti-Alzheimer Drug, M30. Curr Alzheimer Res 7:300–306

    Article  PubMed  CAS  Google Scholar 

  • Bar-Am O, Yogev-Falach M, Amit T, Sagi Y, Youdim MBH (2004) Regulation of protein kinase C by the anti-Parkinson drug, MAO-B inhibitor, rasagiline and its derivatives, in vivo. J Neurochem 89:1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Bar-Am O, Weinreb O, Amit T, Youdim MB (2005) Regulation of Bcl-2 family proteins, neurotrophic factors, and APP processing in the neurorescue activity of propargylamine. Faseb J 19:1899–1901

    PubMed  CAS  Google Scholar 

  • Bartzokis G, Sultzer D, Cummings J, Holt LE, Hance DB, Henderson VW, Mintz J (2000) In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch Gen Psychiatry 57:47–53

    Article  PubMed  CAS  Google Scholar 

  • Benarroch EE (2009) Brain iron homeostasis and neurodegenerative disease. Neurology 72:1436–1440

    Article  PubMed  Google Scholar 

  • Ben-Shachar D, Kahana N, Kampel V, Warshawsky A, Youdim MBH (2004) Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology 46:254–263

    Article  CAS  Google Scholar 

  • Berg D, Gerlach M, Youdim MB, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79:225–236

    Article  PubMed  CAS  Google Scholar 

  • Bergeron M, Yu AY, Solway KE, Semenza GL, Sharp FR (1999) Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. The Eur J Neurosci 11:4159–4170

    Article  CAS  Google Scholar 

  • Bolognin S, Drago D, Messori L, Zatta P (2009) Chelation therapy for neurodegenerative diseases. Med Res Rev 29:547–570

    Article  PubMed  CAS  Google Scholar 

  • Bowser R, Smith MA (2002) Cell cycle proteins in Alzheimer’s disease: plenty of wheels but no cycle. J Alzheimers Dis 4:249–254

    PubMed  CAS  Google Scholar 

  • Bullock R (2004) Future directions in the treatment of Alzheimer’s disease. Expert Opin Investig Drugs 13:303–314

    Article  PubMed  CAS  Google Scholar 

  • Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214

    Article  PubMed  CAS  Google Scholar 

  • Bush AI (2008) Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimers Dis 15:223–240

    PubMed  CAS  Google Scholar 

  • Cahoon L (2009) The curious case of clioquinol. Nat Med 15:356–359

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Storkebaum E (2002) Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol 13:39–53

    Article  PubMed  CAS  Google Scholar 

  • Castellani RJ, Honda K, Zhu X, Cash AD, Nunomura A, Perry G, Smith MA (2004) Contribution of redox-active iron and copper to oxidative damage in Alzheimer disease. Ageing Res Rev 3:319–326

    Article  PubMed  CAS  Google Scholar 

  • Castellani RJ, Moreira PI, Liu G, Dobson J, Perry G, Smith MA, Zhu X (2007) Iron: the redox-active center of oxidative stress in Alzheimer disease. Neurochem Res 32:1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C (2008) Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51:347–372

    Article  PubMed  CAS  Google Scholar 

  • Chavez JC, LaManna JC (2003) Hypoxia-inducible factor-1alpha accumulation in the rat brain in response to hypoxia and ischemia is attenuated during aging. Adv Exp Med Biol 510:337–341

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Tang BL (2006) The amyloid precursor protein and postnatal neurogenesis/neuroregeneration. Biochem Biophys Res Commun 341:1–5

    Article  PubMed  CAS  Google Scholar 

  • Cherny RA, Legg JT, McLean CA, Fairlie DP, Huang X, Atwood CS, Beyreuther K, Tanzi RE, Masters CL, Bush AI (1999) Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion. J Biol Chem 274:23223–23228

    Article  PubMed  CAS  Google Scholar 

  • Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676

    Article  PubMed  CAS  Google Scholar 

  • Cho HH, Cahill CM, Vanderburg CR, Scherzer CR, Wang B, Huang X, Rogers JT (2010) Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem 285(41):31217–31232

    Google Scholar 

  • Chow VW, Mattson MP, Wong PC, Gleichmann M (2010) An Overview of APP processing enzymes and products. Neuromol Med 12:1–12

    Article  CAS  Google Scholar 

  • Connor JR, Menzies SL (1995) Cellular management of iron in the brain. J Neurol Sci 134(Suppl):33–44

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Menzies SL, St Martin SM, Mufson EJ (1992) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res 31:75–83

    Article  PubMed  CAS  Google Scholar 

  • Copani A, Condorelli F, Caruso A, Vancheri C, Sala A, Giuffrida Stella AM, Canonico PL, Nicoletti F, Sortino MA (1999) Mitotic signaling by beta-amyloid causes neuronal death. Faseb J 13:2225–2234

    PubMed  CAS  Google Scholar 

  • Crapper McLachlan DR, Dalton AJ, Kruck TP, Bell MY, Smith WL, Kalow W, Andrews DF (1991) Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337:1304–1308

    Article  PubMed  CAS  Google Scholar 

  • Cuajungco MP, Goldstein LE, Nunomura A, Smith MA, Lim JT, Atwood CS, Huang X, Farrag YW, Perry G, Bush AI (2000) Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of Abeta by zinc. J Biol Chem 275:19439–19442

    Article  PubMed  CAS  Google Scholar 

  • Czyzyk-Krzeska MF, Furnari BA, Lawson EE, Millhorn DE (1994) Hypoxia increases rate of transcription and stability of tyrosine hydroxylase mRNA in pheochromocytoma (PC12) cells. J Biol Chem 269:760–764

    PubMed  CAS  Google Scholar 

  • D’Andrea MR, Nagele RG, Wang HY, Peterson PA, Lee DH (2001) Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology 38:120–134

    Article  PubMed  Google Scholar 

  • Dedeoglu A, Cormier K, Payton S, Tseitlin KA, Kremsky JN, Lai L, Li X, Moir RD, Tanzi RE, Bush AI, Kowall NW, Rogers JT, Huang X (2004) Preliminary studies of a novel bifunctional metal chelator targeting Alzheimer’s amyloidogenesis. Exp Gerontol 39:1641–1649

    Article  PubMed  CAS  Google Scholar 

  • Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, Leong SL, Perez K, Johanssen T, Greenough MA, Cho HH, Galatis D, Moir RD, Masters CL, McLean C, Tanzi RE, Cappai R, Barnham KJ, Ciccotosto GD, Rogers JT, Bush AI (2010) Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 142:857–867

    Google Scholar 

  • Fandrey J (2004) Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol 286:R977–R988

    Article  PubMed  CAS  Google Scholar 

  • Faux NG, Ritchie CW, Gunn A, Rembach A, Tsatsanis A, Bedo J, Harrison J, Lannfelt L, Blennow K, Zetterberg H, Ingelsson M, Masters CL, Tanzi RE, Cummings JL, Herd CM, Bush AI (2010) PBT2 rapidly improves cognition in Alzheimer's Disease: additional phase II analyses. J Alzheimers Dis 20(2):509–516

    Google Scholar 

  • Fillebeen C, Caltagirone A, Martelli A, Moulis JM, Pantopoulos K (2005) IRP1 Ser-711 is a phosphorylation site, critical for regulation of RNA-binding and aconitase activities. Biochem J 388:143–150

    Article  PubMed  CAS  Google Scholar 

  • Frackowiak J, Miller DL, Potempska A, Sukontasup T, Mazur-Kolecka B (2003) Secretion and accumulation of Abeta by brain vascular smooth muscle cells from AbetaPP-Swedish transgenic mice. J Neuropathol Exp Neurol 62:685–696

    PubMed  CAS  Google Scholar 

  • Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  PubMed  CAS  Google Scholar 

  • Francis PT, Nordberg A, Arnold SE (2005) A preclinical view of cholinesterase inhibitors in neuroprotection: do they provide more than symptomatic benefits in Alzheimer’s disease? Trends Pharmacol Sci 26:104–111

    Article  PubMed  CAS  Google Scholar 

  • Gal S, Zheng H, Fridkin M, Youdim MB (2005) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem 95:79–88

    Article  PubMed  CAS  Google Scholar 

  • Gal S, Zheng H, Fridkin M, Youdim MB (2010) Restoration of nigrostriatal dopamine neurons in post-MPTP treatment by the novel multifunctional brain-permeable iron chelator-monoamine oxidase inhibitor drug, M30. Neurotox Res 17:15–27

    Article  PubMed  CAS  Google Scholar 

  • Genc S, Koroglu TF, Genc K (2004a) Erythropoietin and the nervous system. Brain Res 1000:19–31

    Article  PubMed  CAS  Google Scholar 

  • Genc S, Koroglu TF, Genc K (2004b) Erythropoietin as a novel neuroprotectant. Restor Neurol Neurosci 22:105–119

    PubMed  CAS  Google Scholar 

  • Giacobini E (2002) Long-term stabilizing effect of cholinesterase inhibitors in the therapy of Alzheimer’ disease. J Neural Transm (Suppl) 62:181–187

    Google Scholar 

  • Goetz ME, Kunig G, Riederer P, Youdim MB (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol Ther 63:37–122

    Article  CAS  Google Scholar 

  • Good PF, Perl DP, Bierer LM, Schmeidler J (1992) Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol 31:286–292

    Article  PubMed  CAS  Google Scholar 

  • Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, Greenfield JP, Haroutunian V, Buxbaum JD, Xu H, Greengard P, Relkin NR (2000) Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 156:15–20

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  • Hampel H, Shen Y, Walsh DM, Aisen P, Shaw LM, Zetterberg H, Trojanowski JQ, Blennow K (2010) Biological markers of amyloid beta-related mechanisms in Alzheimer’s disease. Exp Neurol 223:334–346

    Article  PubMed  CAS  Google Scholar 

  • Harten SK, Ashcroft M, Maxwell PH (2009) Prolyl hydroxylase domain (PHD) inhibitors: a route to HIF activation and neuroprotection. Antioxid Redox Signal 12:459–480

    Article  CAS  Google Scholar 

  • Hewitson KS, Schofield CJ (2004) The HIF pathway as a therapeutic target. Drug Discov Today 9:704–711

    Article  PubMed  CAS  Google Scholar 

  • Hider RC, Ma Y, Molina-Holgado F, Gaeta A, Roy S (2008) Iron chelation as a potential therapy for neurodegenerative disease. Biochem Soc Trans 36:1304–1308

    Article  PubMed  CAS  Google Scholar 

  • Honda K, Smith MA, Zhu X, Baus D, Merrick WC, Tartakoff AM, Hattier T, Harris PL, Siedlak SL, Fujioka H, Liu Q, Moreira PI, Miller FP, Nunomura A, Shimohama S, Perry G (2005) Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem 280:20978–20986

    Article  PubMed  CAS  Google Scholar 

  • Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design promiscuous drugs? Curr Opin Struct Biol 16:127–136

    Article  PubMed  CAS  Google Scholar 

  • House E, Collingwood J, Khan A, Korchazkina O, Berthon G, Exley C (2004) Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Abeta42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis 6:291–301

    PubMed  CAS  Google Scholar 

  • Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT (2004) Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci 1012:153–163

    Article  PubMed  CAS  Google Scholar 

  • Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C, Garrido J (1996) Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16:881–891

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (1999) The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging 14:115–140

    Article  PubMed  CAS  Google Scholar 

  • Jenagaratnam L, McShane R (2006) Clioquinol for the treatment of Alzheimer’s Disease. Cochrane database of systematic reviews (Online):CD005380

  • Joseph JA, Shukitt-Hale B, Casadesus G, Fisher D (2005) Oxidative stress and inflammation in brain aging: nutritional considerations. Neurochem Res 30:927–935

    Article  PubMed  CAS  Google Scholar 

  • Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4:71–78

    Article  PubMed  CAS  Google Scholar 

  • Kupershmidt L, Weinreb O, Amit T, Mandel S, Carri MT, Youdim MB (2009) Neuroprotective and neuritogenic activities of novel multimodal iron-chelating drugs in motor-neuron-like NSC-34 cells and transgenic mouse model of amyotrophic lateral sclerosis. Faseb J 23:3766–3779

    Article  PubMed  CAS  Google Scholar 

  • Lazarovici P, Gazit A, Staniszewska I, Marcinkiewicz C, Lelkes PI (2006) Nerve growth factor (NGF) promotes angiogenesis in the quail chorioallantoic membrane. Endothelium 13:51–59

    Article  PubMed  CAS  Google Scholar 

  • Lee DW, Andersen JK (2006) Role of HIF-1 in iron regulation: potential therapeutic strategy for neurodegenerative disorders. Curr Mol Med 6:883–893

    Article  PubMed  CAS  Google Scholar 

  • Lehmann DJ, Worwood M, Ellis R, Wimhurst VL, Merryweather-Clarke AT, Warden DR, Smith AD, Robson KJ (2006) Iron genes, iron load and risk of Alzheimer’s disease. J Med Genet 43:e52

    Article  PubMed  CAS  Google Scholar 

  • Liu ST, Howlett G, Barrow CJ (1999) Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the a beta peptide of Alzheimer’s disease. Biochemistry 38:9373–9378

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX (2008) Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett 582:359–364

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Moloney A, Meehan S, Morris K, Thomas SE, Serpell LC, Hider R, Marciniak SJ, Lomas DA, Crowther DC (2011) Iron promotes the toxicity of amyloid {beta} peptide by impeding its ordered aggregation. J Biol Chem 286(6):4248–4256

    Google Scholar 

  • Loeffler DA, Connor JR, Juneau PL, Snyder BS, Kanaley L, DeMaggio AJ, Nguyen H, Brickman CM, LeWitt PA (1995) Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. J Neurochem 65:710–724

    Article  PubMed  CAS  Google Scholar 

  • Lopez OL, Becker JT, Wisniewski S, Saxton J, Kaufer DI, DeKosky ST (2002) Cholinesterase inhibitor treatment alters the natural history of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 72:310–314

    Article  PubMed  CAS  Google Scholar 

  • Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    Article  PubMed  CAS  Google Scholar 

  • Madsen E, Gitlin JD (2007) Copper and iron disorders of the brain. Annu Rev Neurosci 30:317–337

    Article  PubMed  CAS  Google Scholar 

  • Mancino AM, Hindo SS, Kochi A, Lim MH (2009) Effects of clioquinol on metal-triggered amyloid-beta aggregation revisited. Inorg Chem 48:9596–9598

    Article  PubMed  CAS  Google Scholar 

  • Mandel S, Amit T, Bar-Am O, Youdim MB (2007) Iron dysregulation in Alzheimer’s disease: multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities as therapeutic agents. Prog Neurobiol 82:348–360

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Yamamoto T, Kitani K, Carrillo MC, Youdim MBH, Naoi M (2000) Mechanism underlying anti-apoptotic activity of a (−) deprenyl-related propargylamine, rasagiline. Mech Ageing Dev 116:181–191

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Takahashi T, Youdim MBH, Naoi M (2002) The anti-parkinson drug, rasagiline, prevents apoptotic DNA damage induced by peroxynitrite in human dopaminergic neuroblastoma SH-SY5Y cells. J Neural Transm 109:467–481

    Article  PubMed  CAS  Google Scholar 

  • McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol cell 5:299–309

    Article  PubMed  CAS  Google Scholar 

  • Mechlovich D, Amit T, Mandel SA, Bar-Am O, Bloch K, Vardi P, Youdim MB (2010) The novel multifunctional, iron-chelating drugs M30 and HLA20 protect pancreatic beta-cell lines from oxidative stress damage. J Pharmacol Exp Ther 333:874–882

    Article  PubMed  CAS  Google Scholar 

  • Mills J, Reiner PB (1999a) Mitogen-activated protein kinase is involved in N-methyl-d-aspartate receptor regulation of amyloid precursor protein cleavage. Neuroscience 94:1333–1338

    Article  PubMed  CAS  Google Scholar 

  • Mills J, Reiner PB (1999b) Regulation of amyloid precursor protein cleavage. J Neurochem 72:443–460

    Article  PubMed  CAS  Google Scholar 

  • Missero C, Calautti E, Eckner R, Chin J, Tsai LH, Livingston DM, Dotto GP (1995) Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation. Proc Natl Acad Sci USA 92:5451–5455

    Article  PubMed  CAS  Google Scholar 

  • Moalem S, Percy ME, Andrews DF, Kruck TP, Wong S, Dalton AJ, Mehta P, Fedor B, Warren AC (2000) Are hereditary hemochromatosis mutations involved in Alzheimer disease? Am J Med Genet 93:58–66

    Article  PubMed  CAS  Google Scholar 

  • Molina-Holgado F, Hider RC, Gaeta A, Williams R, Francis P (2007) Metals ions and neurodegeneration. Biometals 20:639–654

    Article  PubMed  CAS  Google Scholar 

  • Monji A, Utsumi H, Ueda T, Imoto T, Yoshida I, Hashioka S, Tashiro K, Tashiro N (2002) Amyloid-beta-protein (A beta) (25–35)-associated free radical generation is strongly influenced by the aggregational state of the peptides. Life Sci 70:833–841

    Article  PubMed  CAS  Google Scholar 

  • Moos T, Rosengren Nielsen T, Skjorringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103:1730–1740

    Article  PubMed  CAS  Google Scholar 

  • Moreira PI, Honda K, Liu Q, Santos MS, Oliveira CR, Aliev G, Nunomura A, Zhu X, Smith MA, Perry G (2005) Oxidative stress: the old enemy in Alzheimer’s disease pathophysiology. Curr Alzheimer Res 2:403–408

    Article  PubMed  CAS  Google Scholar 

  • Morse LJ, Payton SM, Cuny GD, Rogers JT (2004) FDA-preapproved drugs targeted to the translational regulation and processing of the amyloid precursor protein. J Mol Neurosci 24:129–136

    Article  PubMed  CAS  Google Scholar 

  • Nagel S, Talbot NP, Mecinovic J, Smith TG, Buchan AM, Schofield CJ (2010) Therapeutic manipulation of the HIF hydroxylases. Antioxid Redox Signal 12:481–501

    Article  PubMed  CAS  Google Scholar 

  • Payton S, Cahill CM, Randall JD, Gullans SR, Rogers JT (2003) Drug discovery targeted to the Alzheimer’s APP mRNA 5′-untranslated region: the action of paroxetine and dimercaptopropanol. J Mol Neurosci 20:267–275

    Article  PubMed  CAS  Google Scholar 

  • Piazzi L, Cavalli A, Colizzi F, Belluti F, Bartolini M, Mancini F, Recanatini M, Andrisano V, Rampa A et al (2008) Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg Med Chem Lett 18:423–426

    Article  PubMed  CAS  Google Scholar 

  • Pinero DJ, Hu J, Connor JR (2000) Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer’s diseased brains. Cell Mol Biol (Noisy-Le-Grand) 46:761–776

    CAS  Google Scholar 

  • Pratico D, Delanty N (2000) Oxidative injury in diseases of the central nervous system: focus on Alzheimer’s disease. Am J Med 109:577–585

    Article  PubMed  CAS  Google Scholar 

  • Przedborski S (2004) Programmed cell death in amyotrophic lateral sclerosis: a mechanism of pathogenic and therapeutic importance. Neurologist 10:1–7

    Article  PubMed  Google Scholar 

  • Rabie T, Marti HH (2008) Brain protection by erythropoietin: a manifold task. Physiology (Bethesda) 23:263–274

    Article  CAS  Google Scholar 

  • Racchi M, Mazzucchelli M, Porrello E, Lanni C, Govoni S (2004) Acetylcholinesterase inhibitors: novel activities of old molecules. Pharmacol Res 50:441–451

    Article  PubMed  CAS  Google Scholar 

  • Rausch WD, Hirata Y, Nagatsu T, Riederer P, Jellinger K (1988) Tyrosine hydroxylase activity in caudate nucleus from Parkinson’s disease: effects of iron and phosphorylating agents. J Neurochem 50:202–208

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Dirr A, Goetz M, Sofic E, Jellinger K, Youdim MBH (1992) Distribution of iron in different brain regions and subcellular compartments in Parkinson’s disease. Ann Neurol 32(Suppl):S101–S104

    Article  PubMed  CAS  Google Scholar 

  • Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A, Carrington D, Mavros C, Volitakis I, Xilinas M, Ames D, Davis S, Beyreuther K, Tanzi RE, Masters CL (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60:1685–1691

    Article  PubMed  Google Scholar 

  • Robinson SR, Bishop GM (2002) Abeta as a bioflocculant: implications for the amyloid hypothesis of Alzheimer’s disease. Neurobiol Aging 23:1051–1072

    Article  PubMed  CAS  Google Scholar 

  • Rogers JT, Lahiri DK (2004) Metal and inflammatory targets for Alzheimer’s disease. Curr Drug Targets 5:535–551

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL, Styren SD, Civin WH, Brachova L, Bradt B, Ward P et al (1992) Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci USA 89:10016–10020

    Article  PubMed  CAS  Google Scholar 

  • Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, Greig NH, Lahiri DK, Tanzi RE, Bush AI, Giordano T, Gullans SR (2002a) An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277:45518–45528

    Article  PubMed  CAS  Google Scholar 

  • Rogers JT, Randall JD, Eder PS, Huang X, Bush AI, Tanzi RE, Venti A, Payton SM, Giordano T, Nagano S, Cahill CM, Moir R, Lahiri DK, Greig N, Sarang SS, Gullans SR (2002b) Alzheimer’s disease drug discovery targeted to the APP mRNA 5′untranslated region. J Mol Neurosci 19:77–82

    Article  PubMed  CAS  Google Scholar 

  • Rogers JT, Bush AI, Cho HH, Smith DH, Thomson AM, Friedlich AL, Lahiri DK, Leedman PJ, Huang X, Cahill CM (2008) Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer’s disease. Biochem Soc Trans 36:1282–1287

    Article  PubMed  CAS  Google Scholar 

  • Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI, Atwood CS, Chevion M, Perry G, Smith MA (2001) Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med 30:447–450

    Article  PubMed  CAS  Google Scholar 

  • Rouault TA, Cooperman S (2006) Brain iron metabolism. Semin Pediatr Neurol 13:142–148

    Article  PubMed  Google Scholar 

  • Sampson E, Jenagaratnam L, McShane R (2008) Metal protein attenuating compounds for the treatment of Alzheimer’s disease. Cochrane database of systematic reviews (Online):CD005380

  • Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA (2000) In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 74:270–279

    Article  PubMed  CAS  Google Scholar 

  • Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8:721–738

    PubMed  CAS  Google Scholar 

  • Schipper HM (2004) Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med 37:1995–2011

    Article  PubMed  CAS  Google Scholar 

  • Schliebs R (2005) Basal forebrain cholinergic dysfunction in Alzheimer’s disease—interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem Res 30:895–908

    Article  PubMed  CAS  Google Scholar 

  • Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354

    Article  PubMed  CAS  Google Scholar 

  • Schubert D, Chevion M (1995) The role of iron in beta amyloid toxicity. Biochem Biophys Res Commun 216:702–707

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7:345–350

    Article  PubMed  CAS  Google Scholar 

  • Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. Faseb J 10:709–720

    PubMed  CAS  Google Scholar 

  • Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G, Smith MA, Fujimoto S (2000) Activation of NADPH oxidase in Alzheimer’s disease brains. Biochem Biophys Res Commun 273:5–9

    Article  PubMed  CAS  Google Scholar 

  • Siddiq A, Aminova LR, Ratan RR (2008) Prolyl 4-hydroxylase activity-responsive transcription factors: from hydroxylation to gene expression and neuroprotection. Front Biosci 13:2875–2887

    Article  PubMed  CAS  Google Scholar 

  • Siddiq A, Aminova LR, Troy CM, Suh K, Messer Z, Semenza GL, Ratan RR (2009) Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J Neurosci 29:8828–8838

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 94:9866–9868

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Hirai K, Hsiao K, Pappolla MA, Harris PL, Siedlak SL, Tabaton M, Perry G (1998a) Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 70:2212–2215

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Wehr K, Harris PL, Siedlak SL, Connor JR, Perry G (1998b) Abnormal localization of iron regulatory protein in Alzheimer’s disease. Brain Res 788:232–236

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G (2000) Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta 1502:139–144

    PubMed  CAS  Google Scholar 

  • Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochim Biophys Acta 1768:1976–1990

    Article  PubMed  CAS  Google Scholar 

  • Stockmann C, Fandrey J (2006) Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression. Clin Exp Pharmacol Physiol 33:968–979

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Perry G, Abraham NG, Dwyer BE, Kutty RK, Laitinen JT, Petersen RB, Smith MA (2000) Overexpression of heme oxygenase in neuronal cells, the possible interaction with Tau. J Biol Chem 275:5395–5399

    Article  PubMed  CAS  Google Scholar 

  • Trushina E, McMurray CT (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145:1233–1248

    Article  PubMed  CAS  Google Scholar 

  • Tsolaki M, Kokarida K, Iakovidou V, Stilopoulos E, Meimaris J, Kazis A (2001) Extrapyramidal symptoms and signs in Alzheimer’s disease: prevalence and correlation with the first symptom. Am J Alzheimers Dis Other Demen 16:268–278

    Article  PubMed  CAS  Google Scholar 

  • Van der Schyf CJ, Gal S, Geldenhuys WJ, Youdim MB (2006a) Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases. Expert Opin Investig Drugs 15:873–886

    Article  PubMed  CAS  Google Scholar 

  • Van der Schyf CJ, Geldenhuys WJ, Youdim MB (2006b) Multifunctional drugs with different CNS targets for neuropsychiatric disorders. J Neurochem 99:1033–1048

    Article  PubMed  CAS  Google Scholar 

  • Van der Schyf CJ, Mandel S, Geldenhuys WJ, Amit T, Avramovich Y, Zheng H, Fridkin M, Gal S, Weinreb O, Bar Am O, Sagi Y, Youdim MB (2007) Novel multifunctional anti-Alzheimer drugs with various CNS neurotransmitter targets and neuroprotective moieties. Curr Alzheimer Res 4:522–536

    Article  PubMed  Google Scholar 

  • Verdile G, Fuller S, Atwood CS, Laws SM, Gandy SE, Martins RN (2004) The role of beta amyloid in Alzheimer’s disease: still a cause of everything or the only one who got caught? Pharmacol Res 50:397–409

    Article  PubMed  CAS  Google Scholar 

  • Vetrivel KS, Thinakaran G (2006) Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments. Neurology 66:S69–S73

    Article  PubMed  CAS  Google Scholar 

  • Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Ward MW, Kogel D, Prehn JH (2004) Neuronal apoptosis: BH3-only proteins the real killers? J Bioenerg Biomembr 36:295–298

    Article  PubMed  CAS  Google Scholar 

  • Weinreb O, Bar-Am O, Amit T, Chillag-Talmor O, Youdim MBH (2004) Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J 18:1471–1473

    PubMed  CAS  Google Scholar 

  • Weinreb O, Amit T, Mandel S, Kupershmidt L, Youdim MB (2010a) Neuroprotective multifunctional iron chelators: from redox-sensitive process to novel therapeutic opportunities. Antioxid Redox Signal 13:919–949

    Article  PubMed  CAS  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O, Youdim MB (2010b) Rasagiline; a novel Anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Prog Neurobiol 92:330–344

    Article  PubMed  CAS  Google Scholar 

  • Whitnall M, Richardson DR (2006) Iron: a new target for pharmacological intervention in neurodegenerative diseases. Semin Pediatr Neurol 13:186–197

    Article  PubMed  Google Scholar 

  • Wu Q, Combs C, Cannady SB, Geldmacher DS, Herrup K (2000) Beta-amyloid activated microglia induce cell cycling and cell death in cultured cortical neurons. Neurobiol Aging 21:797–806

    Article  PubMed  CAS  Google Scholar 

  • Yogev-Falach M, Amit T, Bar-Am O, Sagi Y, Weinstock M, Youdim MBH (2002) The involvement of mitogen-activated protein (MAP) kinase in the regulation of amyloid precursor protein processing by novel cholinesterase inhibitors derived from rasagiline. FASEB J 16:1674–1676

    PubMed  CAS  Google Scholar 

  • Yogev-Falach M, Amit T, Bar-AM O, Youdim MBH (2003) The importance of propargylamine moiety in the anti-Parkinson drug rasagiline and its derivatives for MAPK-dependent amyloid precursor protein processing. FASEB J 17:2325–2327

    PubMed  CAS  Google Scholar 

  • Youdim MB (2008) Brain iron deficiency and excess; cognitive impairment and neurodegeneration with involvement of striatum and hippocampus. Neurotox Res 14:45–56

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Buccafusco JJ (2005) Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 26:27–35

    Article  PubMed  CAS  Google Scholar 

  • Zaman K, Ryu H, Hall D, O’Donovan K, Lin KI, Miller MP, Marquis JC, Baraban JM, Semenza GL, Ratan RR (1999) Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J Neurosci 19:9821–9830

    PubMed  CAS  Google Scholar 

  • Zambenedetti P, De Bellis G, Biunno I, Musicco M, Zatta P (2003) Transferrin C2 variant does confer a risk for Alzheimer’s disease in caucasians. J Alzheimers Dis 5:423–427

    PubMed  CAS  Google Scholar 

  • Zatta P, Drago D, Bolognin S, Sensi SL (2009) Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharmacol Sci 30:346–355

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004a) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG, Karatekin E, Kleinman MH, Turro N, Hornykiewicz O, Zucca FA (2004b) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 101:9843–9848

    Article  PubMed  CAS  Google Scholar 

  • Zhang HY (2005) One-compound-multiple-targets strategy to combat Alzheimer’s disease. FEBS Lett 579:5260–5264

    Article  PubMed  CAS  Google Scholar 

  • Zhang YW, Xu H (2007) Molecular and cellular mechanisms for Alzheimer’s disease: understanding APP metabolism. Curr Mol Med 7:687–696

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Gal S, Weiner LM, Bar-Am O, Warshawsky A, Fridkin M, Youdim MB (2005a) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem 95:68–78

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Weiner LM, Bar-Am O, Epsztejn S, Cabantchik ZI, Warshawsky A, Youdim MB, Fridkin M (2005b) Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorg Med Chem 13:773–783

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Youdim MB, Weiner LM, Fridkin M (2005c) Synthesis and evaluation of peptidic metal chelators for neuroprotection in neurodegenerative diseases. J Pept Res 66:190–203

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Youdim MB, Fridkin M (2010) Site-activated chelators targeting acetylcholinesterase and monoamine oxidase for Alzheimer’s therapy. ACS Chem Biol 5:603–610

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Raina AK, Lee HG, Casadesus G, Smith MA, Perry G (2004) Oxidative stress signaling in Alzheimer’s disease. Brain Res 1000:32–39

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Alzheimer’s Drug Discovery Foundation (ADDF), the Alzheimer’s Association (Chicago, USA), and the Technion-Research and Development and Rappaport Family Research Institute, Technion-Israel Institute of Technology (Haifa, Israel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orly Weinreb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinreb, O., Mandel, S., Bar-Am, O. et al. Iron-chelating backbone coupled with monoamine oxidase inhibitory moiety as novel pluripotential therapeutic agents for Alzheimer’s disease: a tribute to Moussa Youdim. J Neural Transm 118, 479–492 (2011). https://doi.org/10.1007/s00702-011-0597-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-011-0597-6

Keywords

Navigation