Skip to main content

Advertisement

Log in

Genomic and proteomic study to survey the mechanism of action of the anti-Parkinson’s disease drug, rasagiline compared with selegiline, in the rat midbrain

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The novel anti-Parkinson’s disease (PD) drug, rasagiline (N-propargyl-1-(R)-aminoindan), is a second generation of irreversible selective inhibitor of monoamine oxidase-B follows selegiline. In light of the recent large clinical study (phase III ADAGIO) reporting benefits in PD patients, it has been suggested that rasagiline could be the first PD treatment to receive the label neuroprotective “disease-modifying” drug. Indeed, rasagiline has been shown to have a broad neuroprotective activity against a variety of neurotoxins in preclinical models of neurodegenerative diseases and in cultured neuronal cells. In the present study, we have investigated the status of various molecular and biochemical markers in the rat midbrain following chronic treatments with rasagiline and selegiline, using proteomic and genomic analyses. Our findings demonstrated significant molecular changes induced by both drugs, at the protein and transcriptional levels, associated with neuronal differentiation, cell survival and death pathways, metabolism/oxidation stress, signaling system, and biomarkers of neurodegenerative disorders, which may be reflected in the clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abassi ZA, Binah O, Youdim MBH (2004) Cardiovascular activity of rasagiline, a selective and potent inhibitor of mitochondrial monoamine oxidase B: comparison with selegiline. Br J Pharmacol 143:371–378

    Article  CAS  PubMed  Google Scholar 

  • Abu-Raya S, Tabakman R, Blaugrund E, Trembovler V, Lazarovici P (2002) Neuroprotective and neurotoxic effects of monoamine oxidase-B inhibitors and derived metabolites under ischemia in PC12 cells. Eur J Pharmacol 434:109–116

    Article  CAS  PubMed  Google Scholar 

  • Akao Y, Maruyama W, Shimizu S, Yi H, Nakagawa Y, Shamoto-Nagai M, Youdim MBH, Tsujimoto Y, Naoi M (2002) Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and Rasagiline, N-Propargyl-1(R)-aminoindan. J Neurochem 82:913–923

    Article  CAS  PubMed  Google Scholar 

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Bar-Am O, Amit T, Youdim MBH (2004a) Contrasting neuroprotective and neurotoxic actions of respective metabolites of anti-Parkinson drugs rasagiline and selegiline. Neurosci Lett 355:169–172

    Article  PubMed  CAS  Google Scholar 

  • Bar-Am O, Yogev-Falach M, Amit T, Sagi Y, Youdim MBH (2004b) Regulation of protein kinase C by the anti-Parkinson drug, MAO-B inhibitor, rasagiline and its derivatives, in vivo. J Neurochem 89:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Bar-Am O, Weinreb O, Amit T, Youdim MB (2005) Regulation of Bcl-2 family proteins, neurotrophic factors, and APP processing in the neurorescue activity of propargylamine. FASEB J 19:1899–1901

    CAS  PubMed  Google Scholar 

  • Bar-Am O, Amit T, Youdim MB (2007) Aminoindan and hydroxyaminoindan, metabolites of rasagiline and ladostigil, respectively, exert neuroprotective properties in vitro. J Neurochem 103:500–508

    Article  CAS  PubMed  Google Scholar 

  • Beer I, Barnea E, Ziv T, Admon A (2004) Improving large-scale proteomics by clustering of mass spectrometry data. Proteomics 4:950–960

    Article  CAS  PubMed  Google Scholar 

  • Berg D, Holzmann C, Riess O (2003) 14-3-3 proteins in the nervous system. Nat Rev 4:752–762

    Article  CAS  Google Scholar 

  • Binda C, Hubalek F, Li M, Herzig Y, Sterling J, Edmondson DE, Mattevi A (2004) Crystal structures of monoamine oxidase B in complex with four inhibitors of the N-propargylaminoindan class. J Med Chem 47:1767–1774

    Article  CAS  PubMed  Google Scholar 

  • Birkmayer W, Danielczyk W, Neumayer E, Riederer P (1975) Dopaminergic supersensitivity in parkinsonism. Adv Neurol 9:121–129

    CAS  PubMed  Google Scholar 

  • Birkmayer W, Riederer P, Ambrozi L, Youdim MBH (1977) Implications of combined treatment with ‘Madopar’ and l-deprenil in Parkinson’s disease: a long-term study. Lancet 1:439–443

    Article  CAS  PubMed  Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MBH (1983) (−)-Deprenyl leads to prolongation of l-dopa efficacy in Parkinson’s disease. Mod Probl Pharmacopsychiatr 19:170–176

    CAS  Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Marton J (1985) Increased life expectancy resulting from addition of l-deprenyl to Madopar treatment in Parkinson’s disease: a longterm study. J Neural Transm 64:113–127

    Article  CAS  PubMed  Google Scholar 

  • Blandini F (2005) Neuroprotection by rasagiline: a new therapeutic approach to Parkinson’s disease? CNS Drug Rev 11:183–194

    CAS  PubMed  Google Scholar 

  • Blandini F, Armentero MT, Fancellu R, Blaugrund E, Nappi G (2004) Neuroprotective effect of rasagiline in a rodent model of Parkinson’s disease. Exp Neurol 187:455–459

    Article  CAS  PubMed  Google Scholar 

  • Carrillo MC, Kitani K, Kanai S, Sato Y, Ivy GO, Miyasaka K (1996) Long term treatment with (−)deprenyl reduces the optimal dose as well as the effective dose range for increasing antioxidant enzyme activities in old mouse brain. Life Sci 59:1047–1057

    Article  CAS  PubMed  Google Scholar 

  • Carrillo MC, Minami C, Kitani K, Maruyama W, Ohashi K, Yamamoto T, Naoi M, Kanai S, Youdim MBH (2000) Enhancing effect of rasagiline on superoxide dismutase and catalase activities in the dopaminergic system in the rat. Life Sci 67:577–585

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Ly AV (2006) Rasagiline: a second-generation monoamine oxidase type-B inhibitor for the treatment of Parkinson’s disease. Am J Health Syst Pharm 63:915–928

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Swope DM (2005) Clinical pharmacology of rasagiline: a novel, second-generation propargylamine for the treatment of Parkinson disease. J Clin Pharmacol 45:878–894

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Swope DM, Dashtipour K (2007) Comprehensive review of rasagiline, a second-generation monoamine oxidase inhibitor, for the treatment of Parkinson’s disease. Clin Ther 29:1825–1849

    Article  CAS  PubMed  Google Scholar 

  • Chuang DM, Ishitani R (1996) A role for GAPDH in apoptosis and neurodegeneration. Nat Med 2:609–610

    Article  CAS  PubMed  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  • Ebadi M, Ramana Kumari MV, Hiramatsu M, Hao R, Pfeiffer RF, Rojas P (1998) Metallothionein, neurotrophins and selegiline in providing neuroprotection in Parkinson’s disease. Restor Neurol Neurosci 12:103–111

    CAS  PubMed  Google Scholar 

  • Ebadi M, Sharma S, Shavali S, El Refaey H (2002) Neuroprotective actions of selegiline. J Neurosci Res 67:285–289

    Article  CAS  PubMed  Google Scholar 

  • Finberg JP, Youdim MBH (1985) Modification of blood pressure and nictitating membrane response to sympathetic amines by selective monoamine oxidase inhibitors, types A and B, in the cat. Br J Pharmacol 85:541–546

    CAS  PubMed  Google Scholar 

  • Finberg JPM, Tenne M, Youdim MBH (1981) Selective irreversible propargyl derivative inhibitors of monoamine oxidase (MAO) without the cheese effect. In: Youdim MBH, Peykel ES (eds) Monoamine oxidase inhibitors—the state of the art. Wiley, Chichester, pp 31–41

    Google Scholar 

  • Foley P, Gerlach M, Youdim MBH, Riederer P (2000) MAO-B inhibitors: multiple roles in the therapy of neurodegenerative disorders? Park Relat Disord 6:25–47

    Article  CAS  Google Scholar 

  • Goggi J, Theofilopoulos S, Riaz SS, Jauniaux E, Stern GM, Bradford HF (2000) The neuronal survival effects of rasagiline and deprenyl on fetal human and rat ventral mesencephalic neurones in culture. NeuroReport 11:3937–3941

    Article  CAS  PubMed  Google Scholar 

  • Grasing K, Azevedo R, Karuppan S, Ghosh S (2001) Biphasic effects of selegiline on striatal dopamine: lack of effect on methamphetamine-induced dopamine depletion. Neurochem Res 26:65–74

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Russek SJ (2008) BDNF and the diseased nervous system: a delicate balance between adaptive and pathological processes of gene regulation. J Neurochem 105:1–17

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki Y, Ikeda K, Shiojima T, Kobayashi T, Tagaya N, Kinoshita M (1994) Deprenyl enhances neurite outgrowth in cultured rat spinal ventral horn neurons. J Neurol Sci 125:11–13

    Article  CAS  PubMed  Google Scholar 

  • Kitani K, Minami C, Isobe K, Maehara K, Kanai S, Ivy GO, Carrillo MC (2002) Why (−)deprenyl prolongs survivals of experimental animals: increase of anti-oxidant enzymes in brain and other body tissues as well as mobilization of various humoral factors may lead to systemic anti-aging effects. Mech Ageing Dev 123:1087–1100

    Article  CAS  PubMed  Google Scholar 

  • Knoll J, Magyar K (1972) Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5:393–408

    CAS  PubMed  Google Scholar 

  • Kontkanen O, Castren E (1999) Trophic effects of selegiline on cultured dopaminergic neurons. Brain Res 829:190–192

    Article  CAS  PubMed  Google Scholar 

  • Lees AJ, Shaw KM, Kohout LJ, Stern GM, Elsworth JD, Sandler M, Youdim MBH (1977) Deprenyl in Parkinson’s disease. Lancet 2:791–795

    Article  CAS  PubMed  Google Scholar 

  • LeWitt PA (2004) Clinical trials of neuroprotection for Parkinson’s disease. Neurology 63:S23–S31

    PubMed  Google Scholar 

  • Magyar K, Palfi M, Jenei V, Szoko E (2006) Deprenyl: from chemical synthesis to neuroprotection. J Neural Transm Suppl 71:143–156

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Naoi M, Kasamatsu T, Hashizume Y, Takahashi T, Kohda K, Dostert P (1997) An endogenous dopaminergic neurotoxin, N-methyl-(R)-salsolinol, induces DNA damage in human dopaminergic neuroblastoma SH-SY5Y cells. J Neurochem 69:322–329

    CAS  PubMed  Google Scholar 

  • Maruyama W, Akao Y, Youdim MBH, Naoi M (2000a) Neurotoxins induce apoptosis in dopamine neurons: protection by N-propargylamine-1(R)- and (S)-aminoindan, rasagiline and TV1022. J Neural Transm (Suppl) 60:171–186

    Google Scholar 

  • Maruyama W, Youdim MBH, Naoi M (2000b) Antiapoptotic function of N-propargylamine-1(R)- and (S)-aminoindan, Rasagiline and TV1022. Ann NY Acad Sci 939:320–329

    Google Scholar 

  • Maruyama W, Akao Y, Carrillo M, Kitani K, Youdium M, Naoi M (2002a) Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 24:675–682

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Takahashi T, Youdim MBH, Naoi M (2002b) The anti-parkinson drug, rasagiline, prevents apoptotic DNA damage induced by peroxynitrite in human dopaminergic neuroblastoma SH-SY5Y cells. J Neural Transm 109:467–481

    Article  CAS  PubMed  Google Scholar 

  • Nadon R, Shoemaker J (2002) Statistical issues with microarrays: processing and analysis. Trends Genet 18:265–271

    Article  CAS  PubMed  Google Scholar 

  • Oakes D (1993) Antiparkinson efficacy of deprenyl. DATATOP Steering Committee of Parkinson Study Group. Ann Neurol 34:634

    Article  CAS  PubMed  Google Scholar 

  • Olanow CW, Hauser RA, Jankovic J, Langston W, Lang A, Poewe W, Tolosa E, Stocchi F, Melamed E, Eyal E, Rascol O (2008) A randomized, double-blind, placebo-controlled, delayed start study to assess rasagiline as a disease modifying therapy in Parkinson’s disease (the ADAGIO study): rationale, design, and baseline characteristics. Mov Disord 23:2194–2201

    Article  PubMed  Google Scholar 

  • Parkinson Study Group (1989) Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 321:176–183

    Google Scholar 

  • Parkinson Study Group (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 328:176–183

    Article  Google Scholar 

  • Parkinson Study Group (2002) A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol 59:1937–1943

    Article  Google Scholar 

  • Parkinson Study Group (2004) A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol 61:561–566

    Article  Google Scholar 

  • Parkinson Study Group (2005) A randomized placebo-controlled trial of rasagiline in levodopa-treated patients with Parkinson disease and motor fluctuations: the PRESTO study. Arch Neurol 62:241–248

    Article  Google Scholar 

  • Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2:418–427

    Article  CAS  PubMed  Google Scholar 

  • Rabey JM, Sagi I, Huberman M, Melamed E, Korczyn A, Giladi N, Inzelberg R, Djaldetti R, Klein C, Berecz G (2000) Rasagiline mesylate, a new MAO-B inhibitor for the treatment of Parkinson’s disease: a double-blind study as adjunctive therapy to levodopa. Clin Neuropharmacol 23:324–330

    Article  CAS  PubMed  Google Scholar 

  • Reynolds GP, Riederer P, Sandler M, Jellinger K, Seemann D (1978) Amphetamine and 2-phenylethylamine in post-mortem Parkinsonian brain after (−) deprenyl administration. J Neural Transm 43:271–277

    Article  CAS  PubMed  Google Scholar 

  • Riederer P, Youdim MB, Birkmayer W, Jellinger K (1978a) Monoamine oxidase activity during (−)-deprenil therapy: human brain post-mortem studies. Adv Biochem Psychopharmacol 19:377–382

    CAS  PubMed  Google Scholar 

  • Riederer P, Youdim MB, Rausch WD, Birkmayer W, Jellinger K, Seemann D (1978b) On the mode of action of l-deprenyl in the human central nervous system. J Neural Transm 43:217–226

    Article  CAS  PubMed  Google Scholar 

  • Riederer P, Gille G, Muller T, Przuntek H, Reichmann H, Riess O, Schwartz A, Schwarz J, Vogt T (2002) Practical importance of neuroprotection in Parkinson’s disease. J Neurol 249(Suppl 3):III/53–III/56

  • Sabbagh A, Youdim MBH (1978) Selective inhibition of monoamine oxidase type B by propargyl-containing drugs. Isr J Med Sci 14:1097

    Google Scholar 

  • Sagi Y, Mandel S, Y MBH (2003) Genomic and proteomic profiling of the neuroprotective mechanisms of rasagiline in the mouse MPTP model of PD. Neural Plas 10:227

    Google Scholar 

  • Sagi Y, Mandel S, Amit T, Youdim MB (2007) Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced Parkinsonism. Neurobiol Dis 25:35–44

    Article  CAS  PubMed  Google Scholar 

  • Salonen T, Haapalinna A, Heinonen E, Suhonen J, Hervonen A (1996) Monoamine oxidase B inhibitor selegiline protects young and aged rat peripheral sympathetic neurons against 6-hydroxydopamine-induced neurotoxicity. Acta Neuropathol 91:466–474

    Article  CAS  PubMed  Google Scholar 

  • Semkova I, Wolz P, Schilling M, Krieglstein J (1996) Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur J Pharmacol 315:19–30

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Figurov A, Lu B (1997) Recent progress in studies of neurotrophic factors and their clinical implications. J Mol Med (Berlin, Germany) 75:637–644

    CAS  Google Scholar 

  • Shoulson I (1992) An interim report of the effect of selegiline (l-deprenyl) on the progression of disability in early Parkinson’s disease: the Parkinson Study Group. Eur Neurol 32 Suppl 1:46–53

    Article  CAS  PubMed  Google Scholar 

  • Speiser Z, Levy R, Cohen S (1998) Effects of N-propargyl-1-(R)aminoindan (rasagiline) in models of motor and cognition disorders. J Neural Transm Suppl 52:287–300

    CAS  PubMed  Google Scholar 

  • Sterling J, Veinberg A, Lerner D, Goldenberg W, Levy R, Youdim M, Finberg J (1998) (R)(+)-N-propargyl-1-aminoindan (rasagiline) and derivatives: highly selective and potent inhibitors of monoamine oxidase B. J Neural Transm Suppl 52:301–305

    CAS  PubMed  Google Scholar 

  • Streifler M, Rabey MJ (1983) Long-term effects of l-deprenyl in chronic levodopa treated parkinsonian patients. J Neural Transm Suppl 19:265–272

    CAS  PubMed  Google Scholar 

  • Szende B, Bokonyi G, Bocsi J, Keri G, Timar F, Magyar K (2001) Anti-apoptotic and apoptotic action of (−)-deprenyl and its metabolites. J Neural Transm 108:25–33

    Article  CAS  PubMed  Google Scholar 

  • Tatton WG (1993) Selegiline can mediate neuronal rescue rather than neuronal protection. Mov Disord 8:S20–S30

    Article  PubMed  Google Scholar 

  • Tatton WG, Ju WY, Holland DP, Tai C, Kwan M (1994) (−)-Deprenyl reduces PC12 cell apoptosis by inducing new protein synthesis. J Neurochem 63:1572–1575

    Article  CAS  PubMed  Google Scholar 

  • Tatton WG, Chalmers-Redman RM, Ju WJ, Mammen M, Carlile GW, Pong AW, Tatton NA (2002) Propargylamines induce antiapoptotic new protein synthesis in serum- and nerve growth factor (NGF)-withdrawn, NGF-differentiated PC-12 cells. J Pharmacol Exp Ther 301:753–764

    Article  CAS  PubMed  Google Scholar 

  • Ting JT, Kelley BG, Sullivan JM (2006) Synaptotagmin IV does not alter excitatory fast synaptic transmission or fusion pore kinetics in mammalian CNS neurons. J Neurosci 26:372–380

    Article  CAS  PubMed  Google Scholar 

  • Weiner M (1982) Update on antiparkinsonian agents. Geriatrics 37(81–84):89–91

    Google Scholar 

  • Weinreb O, Mandel S, Youdim MBH (2003) Gene and protein expression profiles of anti- and pro-apoptotic actions of dopamine, R-apomorphine, green tea polyphenol (−)-epigallocatechine-3-gallate, and melatonin. Ann NY Acad Sci 993:351–361

    Article  CAS  PubMed  Google Scholar 

  • Weinreb O, Bar-Am O, Amit T, Chillag-Talmor O, Youdim MBH (2004) Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J 18:1471–1473

    CAS  PubMed  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O, Chillag-Talmor O, Youdim MB (2005) Novel neuroprotective mechanism of action of rasagiline is associated with its propargyl moiety: interaction of Bcl-2 family members with PKC Pathway. Ann NY Acad Sci 1053:348–355

    Article  CAS  PubMed  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O, Sagi Y, Mandel S, Youdim MB (2006) Involvement of multiple survival signal transduction pathways in the neuroprotective, neurorescue and APP processing activity of rasagiline and its propargyl moiety. J Neural Transm Suppl 70:457–465

    Article  CAS  PubMed  Google Scholar 

  • Weinreb O, Drigues N, Sagi Y, Reznick AZ, Amit T, Youdim MB (2007) The application of proteomics and genomics to the study of age-related neurodegeneration and neuroprotection. Antioxid Redox Signal 9:169–179

    Article  CAS  PubMed  Google Scholar 

  • Westermeier R, Marouga R (2005) Protein detection methods in proteomics research. Biosci Rep 25:19–32

    Article  CAS  PubMed  Google Scholar 

  • Yates JR 3rd, Eng JK, McCormack AL, Schieltz D (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67:1426–1436

    Article  CAS  PubMed  Google Scholar 

  • Yogev-Falach M, Amit T, Bar-Am O, Sagi Y, Weinstock M, Youdim MBH (2002) The involvement of mitogen-activated protein (MAP) kinase in the regulation of amyloid precursor protein processing by novel cholinesterase inhibitors derived from rasagiline. FASEB J 16:1674–1676

    CAS  PubMed  Google Scholar 

  • Yogev-Falach M, Amit T, Bar-AM O, Youdim MBH (2003) The importance of propargylamine moiety in the anti-Parkinson drug rasagiline and its derivatives for MAPK-dependent amyloid precursor protein processing. FASEB J 17:2325–2327

    CAS  PubMed  Google Scholar 

  • Yoshida T, Yamada Y, Yamamoto T, Kuroiwa Y (1986) Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: relationship of metabolism to MAO-B inhibitory potency. Xenobiotica 16:129–136

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB (2006) The path from anti Parkinson drug selegiline and rasagiline to multifunctional neuroprotective anti Alzheimer drugs ladostigil and M30. Curr Alzheimer Res 3:541–550

    Article  CAS  PubMed  Google Scholar 

  • Youdim MBH, Riederer PF (2004) A review of the mechanisms and role of monoamine oxidase inhibitors in Parkinson’s disease. Neurology 63:S32–S35

    PubMed  Google Scholar 

  • Youdim MB, Tipton KF (2002) Rat striatal monoamine oxidase-B inhibition by l-deprenyl and rasagiline: its relationship to 2-phenylethylamine-induced stereotypy and Parkinson’s disease. Parkinsonism Relat Disord 8:247–253

    Article  CAS  PubMed  Google Scholar 

  • Youdim MBH, Finberg JPM, Levy R, Sterling J, Lerner D, Berger-Paskin T, Yallin H (1995) R-Enantiomers of N-propargyl-aminoindan compounds: their preparation and pharmaceutical composition containing them. In: United States Patent. United States, p 133

  • Youdim MBH, Gross A, Finberg JPM (2001) Rasagiline [N-Propargyl-1R(+)-aminoindant], A selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 132:500–506

    Article  CAS  PubMed  Google Scholar 

  • Youdim MBH, Bar-Am O, Yogev-Falach M, Weinreb O, Maruyama W, Naoi M, Amit T (2004) Rasagiline: neurodegeneration, neuroprotection, and mitochondrial permeability transition. J Neurosci Res 79:172–179

    Article  CAS  Google Scholar 

  • Youdim MB, Maruyama W, Naoi M (2005) Neuropharmacological, neuroprotective and amyloid precursor processing properties of selective MAO-B inhibitor antiparkinsonian drug, rasagiline. Drugs Today 41:369–391

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Xie W, Pan T, Jankovic J, Li J, Youdim MB, Le W (2008) Comparison of neuroprotective and neurorestorative capabilities of rasagiline and selegiline against lactacystin-induced nigrostriatal dopaminergic degeneration. J Neurochem 105:1970–1978

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of Teva Pharmaceutical Co. (Netanya, Israel), the Technion-Research and Development and Rappaport Family Research Institute, Technion-Israel Institute of Technology (Haifa, Israel) and Goldings Fund for Parkinson’s Research (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orly Weinreb.

Additional information

Dedicated to the special issue "Jerusalem".

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinreb, O., Amit, T., Sagi, Y. et al. Genomic and proteomic study to survey the mechanism of action of the anti-Parkinson’s disease drug, rasagiline compared with selegiline, in the rat midbrain. J Neural Transm 116, 1457–1472 (2009). https://doi.org/10.1007/s00702-009-0225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0225-x

Keywords

Navigation