Skip to main content
Log in

Continuous versus pulsatile administration of rotigotine in 6-OHDA-lesioned rats: contralateral rotations and abnormal involuntary movements

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Sustained drug delivery providing continuous dopaminergic stimulation is thought to prevent or delay the induction of motor complications (dyskinesia) in Parkinson’s disease, whereas pulsatile administration is supposed to promote them. This study investigated the inducibility of sensitization and abnormal involuntary movements (AIMs), comparing continuous and pulsatile administration of rotigotine with pulsatile administration of 3,4-dihydroxy-l-phenylalanine (l-DOPA) for reference. Rats were unilaterally lesioned with 6 hydroxydopamine (6-OHDA). For pulsatile administration, l-DOPA-methylester (10 mg/kg l-DOPA i.p.) or rotigotine (1 mg/kg i.p.) were administered once or twice daily. For continuous administration, a slow release formulation of rotigotine was injected s.c. at a dose of 1 mg/kg every 48 h (experiment I) or every 24 h (experiment II). Pulsatile administration of rotigotine and l-DOPA caused contraversive rotations increasing progressively upon each successive treatment. AIMs started to occur after the second administration of l-DOPA but hardly after pulsatile rotigotine. Continuous rotigotine increased rotations, which reached a plateau after the second administration. No AIMs were observed under continuous administration. The continuous administration of rotigotine did not induce sensitization or AIMs, suggesting that continuous stimulation of dopaminergic receptors by rotigotine has no propensity to induce dyskinesia in this experimental model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alam M, Mayerhofer A, Schmidt WJ (2004) The neurobehavioral changes induced by bilateral rotenone lesion in medial forebrain bundle of rats are reversed by l-DOPA. Behav Brain Res 151:117–124

    Article  PubMed  CAS  Google Scholar 

  • Anagnostaras SG, Robinson TE (1996) Sensitization to the psychomotor stimulant effects of amphetamine: modulation by associative learning. Behav Neurosci 110:1397–1414

    Article  PubMed  CAS  Google Scholar 

  • Arnt J, Hyttel J (1984) Differential inhibition by dopamine D-1 and D-2 antagonists of circling behaviour induced by dopamine agonists in rats with unilateral 6-hydroxydopamine lesions. Eur J Pharmacol 102:349–354

    Article  PubMed  CAS  Google Scholar 

  • Bertaina-Anglade V, La Rochelle CD, Scheller DK (2006) Antidepressant properties of rotigotine in experimental models of depression. Eur J Pharmacol 548:106–114

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rub U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249(Suppl 3):lll/1–lll/5

    Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Cenci MA, Lee CS, Bjorklund A (1998) l-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci 10:2694–2706

    Article  PubMed  CAS  Google Scholar 

  • Cenci MA, Whishaw IQ, Schallert T (2002) Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci 3:574–579

    Article  PubMed  CAS  Google Scholar 

  • Chase TN (1998) Levodopa therapy: consequences of the nonphysiologic replacement of dopamine. Neurology 50:S17–S25

    Article  PubMed  CAS  Google Scholar 

  • Chase TN, Engber TM, Mouradian MM (1994) Palliative and prophylactic benefits of continuously administered dopaminomimetics in Parkinson’s disease. Neurology 44(7 Suppl 6):S15–S18

    PubMed  CAS  Google Scholar 

  • Elshoff JP, Cawello W, Braun M, Horstmann R (2006) Stable plasma concentrations over 24 hours in patients with early-stage Parkinson’s disease after once-daily transdermal administration of rotigotine (Neupro®). Neurology 66:A293

    Google Scholar 

  • Fahn S (2005) Does levodopa slow or hasten the rate of progression of Parkinson’s disease? J Neurol 252(Suppl 4):lV37–lV42

    Google Scholar 

  • Gerlach M, Riederer P (1996) Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm 103:987–1041

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM, Canales JJ, Capper-Loup C (2000) Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis. TINS 23(10 Suppl):S71–S77

    PubMed  CAS  Google Scholar 

  • Grosset D (2006) The rotigotine transdermal patch may provide continuous dopaminergic stimulation in early-stage Parkinson’s disease. ACNR 6:32–34

    Google Scholar 

  • Guldenpfennig WM, Poole KH, Sommerville KW, Boroojerdi B (2005) Safety, tolerability, and efficacy of continuous transdermal dopaminergic stimulation with rotigotine patch in early-stage idiopathic Parkinson disease. Clin Neuropharmacol 28:106–110

    Article  PubMed  Google Scholar 

  • Herrera-Marschitz M, Ungerstedt U (1984) Evidence that apomorphine and pergolide induce rotation in rats by different actions on D1 and D2 receptor sites. Eur J Pharmacol 98:165–176

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Hoglinger G, Rousselet E, Breidert T, Parain K, Feger J et al (2003) Animal models of Parkinson’s disease in rodents induced by toxins: an update. J Neural Transm Suppl 10:89–100

    CAS  Google Scholar 

  • Jenner P (2004) Avoidance of dyskinesia: preclinical evidence for continuous dopaminergic stimulation. Neurology 62:S47–S55

    PubMed  CAS  Google Scholar 

  • Jenner P (2005) A novel dopamine agonist for the transdermal treatment of Parkinson’s disease. Neurology 65:S3–S5

    Article  PubMed  CAS  Google Scholar 

  • Kehr J, Hu XJ, Goiny M, Scheller DK (2007) Continuous delivery of rotigotine decreases extracellular dopamine suggesting continuous receptor stimulation. J Neural Transm. 114:1027–1031

    Article  PubMed  CAS  Google Scholar 

  • Lane EL, Cheetham SC, Jenner P (2006) Does contraversive circling in the 6-OHDA-lesioned rat indicate an ability to induce motor complications as well as therapeutic effects in Parkinson’s disease? Exp Neurol 197:284–290

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Cenci MA, Schulzer M, Björklund A (2000) Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Brain 123(Pt 7):1365–1379

    Article  PubMed  Google Scholar 

  • Lim E (2005) A walk through the management of Parkinson s disease. Ann Acad Med Singapore 34:188–195

    PubMed  CAS  Google Scholar 

  • Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA (2002) Pharmacological validation of behavioral measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 15:120–132

    Article  PubMed  CAS  Google Scholar 

  • Marin C, Rodriguez-Oroz MC, Obeso JA (2006) Motor complications in Parkinson’s disease and the clinical significance of rotational behavior in the rat: have we wasted our time? Exp Neurol 197:269–274

    Article  PubMed  CAS  Google Scholar 

  • Metz GA, Tse A, Ballermann M, Smith LK, Fouad K (2005) The unilateral 6-OHDA rat model of Parkinson’s disease revisited: an electromyographic and behavioral analysis. Eur J Neurosci 22:735–744

    Article  PubMed  Google Scholar 

  • Morelli M, Fenu S, Cozzolino A, Di Chiara G (1991) Positive and negative interactions in the behavioral expression of D1 and D2 receptor stimulation in a model of Parkinsonism: role of priming. Neuroscience 42:41–48

    Article  PubMed  CAS  Google Scholar 

  • Obeso JA, Olanow CW, Nutt JG (2000) Levodopa motor complications in Parkinson’s disease. Trends Neurosci 23:S2–S7

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Obeso JA (2000) Preventing levodopa-induced dyskinesias. Ann Neurol 47:S167–S176

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Poewe W, Wenning G (2002) Levodopa in Parkinson’s disease: mechanisms of action and pathophysiology of late failure. In: Jankovic J, Tolosa E (eds) Parkinson’s disease and movement disorders. Lippincott Williams & Wilkins, Philadelphia, pp 104–115

    Google Scholar 

  • Poewe W, Wenning GK (2000) Apomorphine: an underutilized therapy for Parkinson’s disease. Mov Disord 15:789–794

    Article  PubMed  CAS  Google Scholar 

  • Reynolds NA, Wellington K, Easthope SE (2005) Rotigotine: in Parkinson’s disease. CNS Drugs 19:973–981

    Article  PubMed  CAS  Google Scholar 

  • Scheller DKA (2006) Extended receptor profile of rotigotine, a non-ergolinic dopamine agonist being investigated in Parkinson’s Disease. Mov Disord 21:S80

    Google Scholar 

  • Schwarting RK, Huston JP (1996) The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 50:275–331

    Article  PubMed  CAS  Google Scholar 

  • Siever L, Cohen R, Pert A (1981) Assessing pharmacologically induced dopamine receptor sensitivity changes with the Ungerstedt turning model. Psychopharmacology (Berl) 75:212–213

    Article  CAS  Google Scholar 

  • Srinivasan J, Schmidt WJ (2004) Treatment with alpha2-adrenoceptor antagonist, 2-methoxy idazoxan, protects 6-hydroxydopamine-induced Parkinsonian symptoms in rats: neurochemical and behavioral evidence. Behav Brain Res 154:353–363

    Article  PubMed  CAS  Google Scholar 

  • Stocchi F, Olanow CW (2004) Continuous dopaminergic stimulation in early and advanced Parkinson’s disease. Neurology 62:S56–S63

    Article  PubMed  CAS  Google Scholar 

  • Stocchi F, Vacca L, Ruggieri S, Olanow CW (2005) Intermittent vs continuous levodopa administration in patients with advanced Parkinson disease: a clinical and pharmacokinetic study. Arch Neurol 62:905–910

    Article  PubMed  Google Scholar 

  • Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24:485–493

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The investigators also wish to express their appreciation to U. Ruess and W. Jünemann, Department of Neuropharmacology, University Tuebingen, for careful handling of the animals and skilled performance of the investigations. The study was sponsored by SCHWARZ BIOSCIENCES, Alfred-Nobel Strasse 10, 40789, Monheim, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter K. A. Scheller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, W.J., Lebsanft, H., Heindl, M. et al. Continuous versus pulsatile administration of rotigotine in 6-OHDA-lesioned rats: contralateral rotations and abnormal involuntary movements. J Neural Transm 115, 1385–1392 (2008). https://doi.org/10.1007/s00702-008-0102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0102-z

Keywords

Navigation