Skip to main content
Log in

Derivative free algorithm for solving nonlinear equations

  • Published:
Computing Aims and scope Submit manuscript

An Erratum to this article was published on 31 October 2012

Abstract

In this work, we develop a simple yet practical algorithm for constructing derivative free iterative methods of higher convergence orders. The algorithm can be easily implemented in software packages for achieving desired convergence orders. Convergence analysis shows that the algorithm can develop methods of various convergence orders which is also supported through the numerical work. Computational results ascertain that the developed algorithm is efficient and demonstrate equal or better performance as compared with other well known methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma JR (2005) A composite third order Newton–Steffensen method for solving nonlinear equations. Appl Math Comput 169(1): 242–246

    Article  MATH  MathSciNet  Google Scholar 

  2. Argyros IK (2007) Computational theory of iterative methods, series: studies in computational mathematics. In: Chui CK, Wuytack L (eds) Elsevier, New York, vol 15

  3. Li X, Mu C, Ma J, Wang C (2009) Sixteenth order method for nonlinear equations. Appl Math Comput 215(10): 3769–4054

    MathSciNet  Google Scholar 

  4. Neta B (1981) On a family of multipoint methods for non-linear equations. Int J Comput Math 9: 353–361

    Article  MATH  MathSciNet  Google Scholar 

  5. King RF (1973) A family of fourth order methods for nonlinear equations. SIAM J Numer Anal 10(5): 876–879

    Article  MATH  MathSciNet  Google Scholar 

  6. Traub JF (1977) Iterative methods for the solution of equations. Chelsea Publishing Company, New York

    Google Scholar 

  7. Argyros IK, Chen D, Qian Q (1994) The Jarrat method in Banach space setting. J Comput Appl Math 51: 103–106

    Article  MATH  MathSciNet  Google Scholar 

  8. Chun C (2006) Construction of Newton-like iteration methods for solving nonlinear equations. Numer Math 104(3): 297–315

    Article  MATH  MathSciNet  Google Scholar 

  9. Ren H, Wu Q, Bi W (2009) New variants of Jarratt’s method with sixth-order convergence. Numer Algorithms 52: 585–603

    Article  MATH  MathSciNet  Google Scholar 

  10. Wang X, Kou J, Li Y (2008) A variant of Jarratt method with sixth-order convergence. Appl Math Comput 204: 14–19

    Article  MATH  MathSciNet  Google Scholar 

  11. Sharma JR, Guha RK (2007) A family of modified Ostrowski methods with accelerated sixth order convergence. Appl Math Comput 190: 111–115

    Article  MATH  MathSciNet  Google Scholar 

  12. Chun C, Ham Y (2003) Some sixth-order variants of Ostrowski root-finding methods. Appl Math Comput 193: 389–394

    Article  MathSciNet  Google Scholar 

  13. Bi W, Ren H, Wu Q (2009) Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J Comput Appl Math. 225: 105–112

    Article  MATH  MathSciNet  Google Scholar 

  14. ARPREC, C++/Fortran-90 arbitrary precision package. http://crd.lbl.gov/~dhbailey/mpdist/

  15. Hernández MA (2000) Second-derivative-free variant of the Chebyshev method for nonlinear equations. J Optim Theory Appl 104(3): 501–515

    Article  MATH  MathSciNet  Google Scholar 

  16. Hernández MA (2001) Chebyshev’s approximation algorithms, applications. Comput Math Appl 41: 433–445

    Article  MATH  MathSciNet  Google Scholar 

  17. Kou J, Li Y, Wang X (2006) A uniparametric Chebyshev-type method free from second derivatives. Appl Math Comput 179: 296–300

    Article  MATH  MathSciNet  Google Scholar 

  18. Wu QB, Zhao YQ (2006) The convergence theorem for a family deformed Chebyshev method in Banach space. Appl Math Comput 182: 1369–1376

    Article  MATH  MathSciNet  Google Scholar 

  19. Frontini M, Sormani E (2004) Third-order methods from quadrature formulae for solving systems of nonlinear equations. Appl Math Comput 149: 771–782

    Article  MATH  MathSciNet  Google Scholar 

  20. Chun C (2007) Some second-derivative-free variants of Chebyshev–Halley methods. Appl Math Comput 191(2): 410–414

    Article  MATH  MathSciNet  Google Scholar 

  21. Kou J, Li Y, Wang X (2006) Modified Halleys method free from second derivative. Appl Math Comput 183(1): 704–708

    Article  MATH  MathSciNet  Google Scholar 

  22. Yueqing Z, Wu Q (2008) Newton-Kantorovich theorem for a family of modified Halleys methodnext term under Hlder continuity conditions in Banach space. Appl Math Comput 202(1): 243–251

    Article  MATH  MathSciNet  Google Scholar 

  23. Noor MA, Khana WA, Hussaina A (2007) A new modified Halley method without second derivatives for nonlinear equation. Appl Math Comput 189(2): 1268–1273

    Article  MATH  MathSciNet  Google Scholar 

  24. Osada N (2008) Chebyshev-Halley methods for analytic functions. J Comput Appl Math 216(2): 585–599

    Article  MATH  MathSciNet  Google Scholar 

  25. Ezquerro JA, Hernándeza MA (2007) Halley’s method for operators with unbounded second derivative. Appl Numer Math 57(3): 354–360

    Article  MATH  MathSciNet  Google Scholar 

  26. Xiaojian Z (2008) Modified Chebyshev–Halley methods term free from second derivative. Appl Math Comput 203(2): 824–827

    Article  MATH  MathSciNet  Google Scholar 

  27. Kanwar V, Tomar SK (2007) Modified families of Newton, Halley and Chebyshev methods. Appl Math Comput 192(1): 20–26

    Article  MATH  MathSciNet  Google Scholar 

  28. Xu X, Ling Y (2009) Semilocal convergence for Halley’s method under weak Lipschitz condition. Appl Math Comput 215(8): 3057–3067

    Article  MATH  MathSciNet  Google Scholar 

  29. Noor KI, Noor MA (2007) Predictor-corrector Halley method for nonlinear equations. Appl Math Comput 188(2): 1587–1591

    Article  MATH  MathSciNet  Google Scholar 

  30. Li S, Li H, Cheng L (2009) Some second-derivative-free variants of Halleys method for multiple roots. Appl Math Comput 215(6): 2192–2198

    Article  MATH  MathSciNet  Google Scholar 

  31. Ezquerro JA, Hernándeza MA (2004) On Halley-type iterations with free second derivative. J Comput Appl Math 170(2): 455–459

    Article  MATH  MathSciNet  Google Scholar 

  32. Argyros IK (1997) The super-Halley method using divided differences. Appl Math Lett 10(4): 91–95

    Article  MATH  MathSciNet  Google Scholar 

  33. Ye X, Li C (2006) Convergence of the family of the deformed Euler–Halley iterations under the Hlder condition of the second derivative. J Comput Appl Math 194(2): 294–308

    Article  MATH  MathSciNet  Google Scholar 

  34. Rafiq A, Awais M, Zafar F (2007) Modified efficient variant of super-Halley method. Appl Math Comput 189(2): 2004–2010

    Article  MATH  MathSciNet  Google Scholar 

  35. Reeves R (1991) A note on Halley’s method. Comput Graph 15(1): 89–90

    Article  MathSciNet  Google Scholar 

  36. Gutiérrez JM, Hernándeza MA (2001) An acceleration of Newton’s method: super-Halley method. Appl Math Comput 117(2–3): 223–239

    Article  MATH  MathSciNet  Google Scholar 

  37. Ezquerro JA, Hernándeza MA (2000) A modification of the super-Halley method under mild differentiability conditions. J Comput Appl Math 114(2): 405–409

    Article  MATH  MathSciNet  Google Scholar 

  38. Amat S, Bermúdez C, Busquier S, Mestiri D (2009) A family of Halley’s Chebyshev iterative schemes for non-Frchet differentiable operators. J Comput Appl Math 228(1): 486–493

    Article  MATH  MathSciNet  Google Scholar 

  39. Amat S, Busquier S, Gutiérrez JM (2003) Geometric constructions of iterative functions to solve nonlinear equations. J Comput Appl Math 157(1): 197–205

    Article  MATH  MathSciNet  Google Scholar 

  40. Grau M, Noguera M (2004) A variant of Cauchy’s method with accelerated fifth-order convergence. Appl Math Lett 17: 509–517

    Article  MATH  MathSciNet  Google Scholar 

  41. Kou J (2008) Some variants of Cauchy’s method with accelerated fourth-order convergence. J Comput Appl Math 213(1): 71–78

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Khattri.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s00607-012-0221-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khattri, S.K., Log, T. Derivative free algorithm for solving nonlinear equations. Computing 92, 169–179 (2011). https://doi.org/10.1007/s00607-010-0135-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-010-0135-7

Keywords

Mathematics Subject Classification (2000)

Navigation