Skip to main content
Log in

Extreme genetic depauperation and differentiation of both populations and species in Eurasian feather grasses (Stipa)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

A highly selfing breeding system affects gene flow, which may have consequences for patterns of genetic variation and differentiation on both the population and species level. Feather grasses (Stipa spp.) are dominant elements of Eurasian steppes that persist in Central Europe in scattered isolated populations that are of great conservation interest. Cleistogamy is common in the Stipa pennata group, the phylogeny of which is largely unresolved. Intraspecific patterns of genetic variation can be characterised by lack of gene flow due to selfing, but also by large-scale historical migrations and long-term isolation. We analysed both 5 species within the S. pennata group and 33 populations of Stipa pulcherrima sampled across a large part of its range. Using AFLP markers we assessed phylogenetic relationships of the S. pennata group and patterns of genetic variation within and among populations. The S. pennata group formed a consistent clade separated from S. capillata. Stipa pulcherrima was sister to S. eriocaulis, but the relationships among S. pennata s. str., S. borysthenica., and S. tirsa remained unresolved. Within-population genetic variation was extremely low in all species of the S. pennata group (H e = 0.0–0.013). In S. pulcherrima, genetic variation was consistently relatively high in the east (Romania, Russia) and declined toward western populations, with many populations at the western range edge lacking genetic variation entirely. Populations were strongly differentiated (F ST = 0.762), and this differentiation did not follow a classical pattern of isolation by distance. Bayesian cluster analysis revealed nine gene pools in S. pulcherrima, which were mostly geographically clustered. Overall the results suggest that S. pulcherrima and species of the S. pennata group are characterised by a cleistogamous breeding system leading to extremely low levels of genetic variation and high levels of population differentiation at both the population and species level. Postglacial colonisation, current population isolation, and population bottlenecks at the western range periphery have further reduced genetic variation and obviated gene exchange. Thus, genetic variation can only be preserved by the conservation of multiple populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bieniek A, Pokorny P (2005) A new find of macrofossils of feather grass (Stipa) in an Early Bronze Age storage pit at Vlineves, Czech Republic: local implications and possible interpretation in a Central European context. Veget Hist Archaeobot 14:295–302

    Article  Google Scholar 

  • Brown WV (1952) The relation of soil moisture to cleistogamy ina Stipa leucotricha. Bot Gaz 113:438–444

    Article  Google Scholar 

  • Chessel D, Dafour A-B, Thioulouse J (2004) The ade4 package. I. One-table methods. R-news 4:5–10

    Google Scholar 

  • Cole CT (2003) Genetic variation in rare and common plants. Annu Rev Ecol Evol Syst 34:213–237

    Article  Google Scholar 

  • Corander J, Marttinen P, Siren J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9:539

    Article  PubMed  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Ehrich D (2006) AFLPDAT: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604

    Article  Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen, 6th edn. Ulmer, Stuttgart

    Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size—implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305–327

    Article  PubMed  CAS  Google Scholar 

  • Freitag H (1985) The genus Stipa (Gramineae) in southwest and south Asia. Notes Roy Bot Gard Edinburgh 42:355–489

    Google Scholar 

  • Frenzel B (1968) The Pleistocene vegetation of Northern Eurasia. Science 161:637–649

    Article  PubMed  CAS  Google Scholar 

  • Godron DA (1873) De la floraison des graminées et spécialement des céréales. Mémoires de la Société Nationale des Sciences Naturelles de Cherbourg 17:105–197

    Google Scholar 

  • Godt MJW, Hamrick JL (1998) Allozyme diversity in the grasses. In: Cheplick GP (ed) Populations biology of grasses. Cambridge University Press, Cambridge, pp 11–29

    Chapter  Google Scholar 

  • Hackel E (1906) Ãœber Kleistogamie bei den Gräsern. Österr Bot Z 56:81–88 143–154,180–186

    Article  Google Scholar 

  • Hamasha HR, von Hagen KB, Röser M (2012) Stipa (Poaceae) and allies in the Old World: molecular phylogenetics realigns genus circumscription and gives evidence on the origin of American and Australian lineages. Plant Syst Evol 298:351–367

    Article  Google Scholar 

  • Hamasha HR, Schmidt-Lebuhn AN, Durka W, Schleuning M, Hensen I (2013) Bioclimatic regions influence genetic structure of four Jordanian Stipa species. Plant Biol. doi:10.1111/j.1438-8677.2012.00689.x

  • Hamrick JL, Godt MJ (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer Associates Inc., Sunderland, pp 43–63

    Google Scholar 

  • Hensen I, Wesche K (2007) Genetic structure of the rare Poa badensis (Poaceae) in central Germany. Nova Hedwig Beih 131:177–186

    Google Scholar 

  • Hensen I, Kilian C, Wagner V, Durka W, Pusch J, Wesche K (2010) Low genetic variability and strong differentiation among isolated populations of the rare steppe grass Stipa capillata L. in central Europe. Plant Biol 12:526–536

    Article  PubMed  CAS  Google Scholar 

  • Huenneke LF (1991) Ecological implications of genetic variation in plant populations. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, Oxford, pp 31–44

    Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282–291

    Article  Google Scholar 

  • Jäger EJ (2011) Rothmaler–Exkursionsflora von Deutschland, Bd. 2, Grundband: Gefäßpflanzen. Elsevier, Heidelberg, p 930

  • Korneck D, Scholz H (2007) Stipa pulcherrima subsp. palatina, eine neue Federgras-Sippe aus der Pfalz. Kochia 2:1–7

    Google Scholar 

  • Krzakowa M, Michalak M (2007) Genetic variability of selected marginal populations of Stipa capillata L. Biol Lett 44:127–135

    Google Scholar 

  • Kunes P, Pelankova B, Chytry M, Jankovska V, Pokorny P, Petr L (2008) Interpretation of the last-glacial vegetation of eastern-central Europe using modern analogues from southern Siberia. J Biogeogr 35:2223–2236

    Article  Google Scholar 

  • Lachmuth S, Durka W, Schurr F (2010) The making of a rapid plant invader: genetic diversity and differentiation in the native and invaded range of Senecio inaequidens. Mol Ecol 19:3952–3967

    Article  PubMed  Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  • Levin DA (2010) Environment-enhanced self-fertilization: implications for niche shifts in adjacent populations. J Ecol 98:1276–1283

    Article  Google Scholar 

  • Liu WS, Dong M, Song ZP, Wei W (2009) Genetic diversity pattern of Stipa purpurea populations in the hinterland of Qinghai-Tibet Plateau. Ann Appl Biol 154:57–65

    Article  CAS  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • Meindl C (2012) New aspects in plant conservation—Phylogeography, population dynamics, genetics and management of steppe plants in Bavaria. PhD thesis. Universität Regensburg

  • Michalski SG, Durka W (2007) High selfing and high inbreeding depression in peripheral populations of Juncus atratus. Mol Ecol 16:4715–4727

    Article  PubMed  Google Scholar 

  • Michalski SG, Durka W (2009) Pollination mode and life form strongly affect the relation between mating system and pollen to ovule ratios. New Phytol 183:470–479

    Article  Google Scholar 

  • Michalski SG, Durka W (2010) Pollen and ovule production in wind-pollinated species with special reference to Juncus. Plant Syst Evol 286:191–197

    Article  Google Scholar 

  • Noel F, Machon N, Porcher E (2007) No genetic diversity at molecular markers and strong phenotypic plasticity in populations of Ranunculus nodiflorus, an endangered plant species in France. Ann Bot 99:1203–1212

    Article  PubMed  Google Scholar 

  • Oostermeijer JGB, Berholz A, Poschlod P (1996) Genetical aspects of fragmented plant populations. In: Settele J, Margules CR, Poschlod P, Henle K (eds) Species survival in fragmented landscapes. Kluwer Academic Publishers, Dordrecht, pp 93–101

    Chapter  Google Scholar 

  • Peakall R, Ebert D, Scott LJ, Meagher PF, Offord CA (2003) Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Mol Ecol 12:2331–2343

    Article  PubMed  CAS  Google Scholar 

  • Ponomarev AN (1961) Klejstogomiya u Kovylej [Cleistogamy in the feather grasses (Stipa spp.)]. Bot Zh 46:1229–1236

    Google Scholar 

  • Pott R (1996) Die Entwicklungsgeschichte und Verbreitung xerothermer Vegetationseinheiten in Mitteleuropa unter dem Einfluß des Menschen. Tuexenia 16:337–369

    Google Scholar 

  • Ronnenberg K, Hensen I, Wesche K (2011) Contrasting effects of precipitation and fertilization on seed viability and production of Stipa krylovii in Mongolia. Basic Appl Ecol 12:141–151

    Article  Google Scholar 

  • Sheidai M, Attaei S, Khosravi-Reineh M (2006) Cytology of some Iranian Stipa (Poaceae) species and populations. Acta Bot Croat 65:1–11

    Google Scholar 

  • Stebbins GL (1957) Self fertilization and population variability in the higher plants. Am Nat 91:337–354

    Article  Google Scholar 

  • Tsvelev NN (1977) O proiskhozhdenie i évolyutsii kovyleÄ­ (On the origin and evolution of the feathergrasses). In: Problemii Ekologii, Geobotaniki, and Botaniicheskoi Geografii i Floristickii. Nauka, Leningrad (St. Petersburg), Russia, pp 139–150

  • Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the author. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium

  • Voss N, Eckstein RL, Durka W (2012) Range expansion of a selfing polyploid plant despite genetic uniformity. Ann Bot 110:585–593

    Article  PubMed  Google Scholar 

  • Wagner V, Durka W, Hensen I (2011) Increased genetic differentiation but no reduced genetic diversity in peripheral vs. central populations of a steppe grass. Am J Bot 98:1173–1179

    Article  PubMed  Google Scholar 

  • Wagner V, Treiber J, Danihelka J, Ruprecht E, Wesche K, Hensen I (2012) Declining genetic diversity and increasing genetic isolation towards the range periphery of Stipa pennata, a Eurasian feather grass. Int J Plant Sci 173:802–811

    Article  Google Scholar 

  • Walter H, Straka H (1970) Arealkunde. Floristisch-historische Geobotanik. Verlag Eugen Ulmer, Stuttgart, p 478

    Google Scholar 

  • Wisskirchen R, Haeupler H (1998) Standardliste der Farn- und Blütenpflanzen Deutschlands. Ulmer, Stuttgart, p 765

    Google Scholar 

  • Wright SI, Ness RW, Foxe JP, Barrett SCH (2008) Genomic consequences of outcrossing and selfing in plants. Int J Plant Sci 169:105–118

    Article  Google Scholar 

Download references

Acknowledgments

We thank D. Korneck and L. Skol'zneva for providing plant samples; K.-E. Behre, W. Frey and F. Schlütz kindly gave advice on the vegetation history of Central Europe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Durka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durka, W., Nossol, C., Welk, E. et al. Extreme genetic depauperation and differentiation of both populations and species in Eurasian feather grasses (Stipa). Plant Syst Evol 299, 259–269 (2013). https://doi.org/10.1007/s00606-012-0719-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-012-0719-0

Keywords

Navigation