Skip to main content
Log in

Extent of nuclear genome sharing among white oak species (Quercus L. subgen. Lepidobalanus (Endl.) Oerst.) in Slovakia estimated by allozymes

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

European white oak species (Quercus subg. Lepidobalanus) are known to share a substantial part of the nuclear and cytoplasmic genome. In spite of this fact, they have preserved their integrity. We analyzed genetic variation at thirteen isozyme loci in nine Quercus robur, ten Q. petraea, two Q. pubescens and two mixed (two-species) populations in Slovakia to assess the extent of allele sharing. Moreover, a detailed morphometric study based on thirteen leaf traits was done in the mixed stands. A Bayesian analysis of population structure in the set of pure populations revealed the existence of three clusters, which coincided with the supposed taxonomical identity of populations. However, the distribution of posterior probabilities of data was bimodal with a second peak at six groups, what indicates a possible substructure in the gene pools of the investigated oak species. Moreover, gene admixture was close to 50% in all investigated populations. Morphometric analysis of the two mixed stands revealed a clear morphological separation of the studied oak species, sharply contrasting with a high degree of gene admixture. Differentiation is not uniformly distributed over the genome. High levels of differentiation (F ST > 0.10) were observed at only three out of thirteen loci. The hypotheses explaining extensive allele sharing (shared ancestral polymorphisms vs. high levels of interspecific gene flow) are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnold M. L. (2006). Evolution through genetic exchange. Oxford University Press, Oxford

    Google Scholar 

  • Arnold M. L. and Hodges S. A. (1995). Are natural hybrids fit or unfit relative to their parents? Trends Ecol. Evol. 10: 67–71

    Article  Google Scholar 

  • Arnold M. L., Kentner E. K., Johnston J. A., Cornman S. and Bouck A. C. (2001). Natural hybridisation and fitness. Taxon 50: 93–104

    Article  Google Scholar 

  • Bacilieri R., Ducousso A., Petit R. J. and Kremer A. (1996). Mating system and asymmetric hybridization in a mixed stand of European oaks. Evolution 50: 900–908

    Article  Google Scholar 

  • Borazan A. and Babac M. T. (2003). Morphometric leaf variation in oaks (Quercus) of Bolu, Turkey. Ann. Bot. Fenn. 40: 233–242

    Google Scholar 

  • Burke J. M., Carney S. E. and Arnold M. L. (1998). Hybrid fitness in the Louisiana irises: Analysis of parental and F1 performance. Evolution 52: 37–43

    Article  Google Scholar 

  • Comes H. P. and Abbott R. J. (2001). Molecular phylogeography, reticulation and lineage sorting in Mediterranean Senecio sect. Senecio (Asteraceae). Evolution 55: 1943–1962

    PubMed  CAS  Google Scholar 

  • Cronn R. and Wendel J. F. (2003). Cryptic trysts, genomic mergers and plant speciation. New Phytologist 161: 133–142

    Article  Google Scholar 

  • Dupouey J. L. and Badeau V. (1993). Morphological variability of oaks (Quercus robur L., Quercus petraea (Matt.) Liebl., Quercus pubescens Willd.) in northeastern France. Ann. Sci. For. 50: 35–40

    Article  Google Scholar 

  • Gömöry D., Yakovlev I., Zhelev P., Jedináková J. and Paule L. (2001). Genetic differentiation of oak populations within the Quercus robur/Quercus petraea complex in Central and Eastern Europe. Heredity 86: 557–563

    Article  PubMed  Google Scholar 

  • Gonzalez-Rodriguez A. and Oyama K. (2005). Leaf morphometric variation in Quercus affinis and Q laurina (Fagaceae), two hybridizing Mexican red oaks. Bot. J. Linn. Soc. 147: 427–435

    Article  Google Scholar 

  • Hauser T. P., Shaw R. G. and Ostergard H. (1998). Fitness of F1 hybrids between weedy Brassica rapa and oilseed rape (B napus). Heredity 81: 429–435

    Article  Google Scholar 

  • Himrane H., Camarero J. J. and Gil-Pelegrin E. (2004). Morphological and ecophysiological variation of the hybrid oak Quercus subpyrenaica (Q. faginea × Q. pubescens). Trees - Structure and Function 18: 566–575

    Google Scholar 

  • Kleinschmit J. and Kleinschmit J. G. R. (2000). Quercus robur – Quercus petraea: a critical review of the species concept. Glas. šum. pokuse, Zagreb 37: 441–452

    Google Scholar 

  • Kremer A., Dupouey J. L., Deans J. D., Cottrell J., Csaikl U., Finkeldey R., Espinel S., Jensen J., Kleinschmit J., Van Dam B., Ducousso A., Forrest I., Lopez de Heredia U., Lowe A. J., Tutková M., Munro R. C., Steinhoff S., and Badeau V. (2002). Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Ann. For. Sci. 59: 777–787

    Article  Google Scholar 

  • Lexer C., Kremer A. and Petit R. J. (2006). Shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Molec. Ecol. 15: 2007–2012

    Article  CAS  Google Scholar 

  • Linnaeus C. (1753) Species Plantarum, Tomus II, Stockholm.

  • Longauer R. (1996) Genetic diversity of silver fir (Abies alba Mill.). PhD Thesis, Technical University in Zvolen, Zvolen.

  • Magic D. (1975). Taxonomické poznámky k doterajšiemu výskumu dubov v Západných Karpatoch. Biológia 30: 65–74

    Google Scholar 

  • Mallet J. (2005). Hybridization as an invasion of the genome. Trends Ecol. Evol. 20: 229–237

    Article  PubMed  Google Scholar 

  • Mir C., Toumi L., Jarne P., Sarda V., Di Giusto F. and Lumaret R. (2006). Endemic North African Quercus afares Pomel originates from hybridisation between two genetically very distant oak species (Q suber L. and Q. canariensis Willd.): evidence from nuclear and cytoplasmic markers. Heredity 96: 175–184

    Article  PubMed  CAS  Google Scholar 

  • Muir G. and Schlötterer C. (2005). Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Molec. Ecol. 14: 549–561

    Article  CAS  Google Scholar 

  • Müller-Starck G., Herzog S. and Hattemer H. H. (1993). Intra- and interpopulational genetic variation in juvenile populations of Quercus robur L. and Quercus petraea. Liebl. Ann. Sci. For. 50: 233–244

    Article  Google Scholar 

  • Müller-Starck G., Zanetto A., Kremer A. and Herzog S. (1996). Inheritance of isoenzymes in sessile oak (Quercus petraea (Matt.) Liebl.) and offspring from interspecific crosses. For. Genet. 3: 1–12

    Google Scholar 

  • Pamilo P. and Nei M. (1988). Relationships between gene trees and species trees. Molec. Biol. Evol. 5: 568–583

    PubMed  CAS  Google Scholar 

  • Petit R. J., Pineau E., Demesure B., Bacilieri R., Ducousso A. and Kremer A. (1997). Chloroplast DNA footprints of postglacial recolonization by oaks. Proc. Natl. Acad. Sci. USA 94: 9996–10001

    Article  PubMed  CAS  Google Scholar 

  • Pritchard J. K., Stephens M. and Donnelly P. (2000). Inference of population structure from multilocus genotype data. Genetics 155: 945–959

    PubMed  CAS  Google Scholar 

  • Raymond M. and Rousset F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86: 248–249

    Google Scholar 

  • Rieseberg L. H., Whitton J. and Gardner K. (1999). Hybrid zones and the genetic architecture of a barrier to gene flow between two wild sunflower species. Genetics 152: 713–727

    PubMed  CAS  Google Scholar 

  • Rieseberg L. H., Church S. A. and Morjan C. L. (2004). Integration of populations and differentiation of species. New Phytologist 161: 59–69

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg L. H. and Carney S. E. (1998). Plant hybridization. New Phytologist 140: 599–624

    Article  Google Scholar 

  • Samuel R., Pinsker W. and Ehrendorfer F. (1995). Electrophoretic analysis of genetic variation within and between populations of Quercus cerris, Q pubescens, Q. petraea and Q. robur (Fagaceae) from Eastern Austria. Bot. Acta 108: 290–299

    CAS  Google Scholar 

  • SAS (1988) SAS/STAT® User's Guide, Release 6.03 Edition. SAS Institute Inc., Cary NC, 1028 pp.

  • Schwarz O. (1936–1937) Monographie der Eichen Europas und des Mittelmeergebiets. Feddes Repert. Sonderbeih. Dr. 1–400.

  • Schwarz O. (1964). Quercus L. In: Tutin, T. G., Heywood, V. H., Burges, N. A., Valentine, D. H., Walters, S. M. and Webb, D. A. (eds) Flora Europaea, vol. 1: Lycopodiaceae to Platanaceae, pp 61–64. Cambridge University Press, Cambridge

    Google Scholar 

  • Schwarzbach A. E., Donovan L. A. and Rieseberg L. H. (2001). Transgressive character expression in a hybrid sunflower species. Amer. J. Bot. 88: 270–277

    Article  Google Scholar 

  • Schweitzer J. A., Martinsen G. D. and Whitham T. G. (2002). Cottonwood hybrids gain fitness traits of both parents: A mechanism for their long-term persistence? Amer. J. Bot. 89: 981–990

    Article  Google Scholar 

  • Steinhoff S. (1997). Results of Quercus hybridization work from 1989 to 1996 at Escherode (Quercus petraea (Matt.) Liebl. and Quercus robur L.). In: Steiner, K. C. (eds) Diversity and adaptation in oak species, pp 156–164. The Pennsylvania State University, Pennsylvania

    Google Scholar 

  • Tovar-Sanchez E. and Oyama K. (2004). Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: Morphological and molecular evidence. Amer. J. Bot. 91: 1352–1363

    Article  CAS  Google Scholar 

  • Valbuena-Carabana M., Gonzalez-Martinez S. C., Sork V. L., Collada C., Soto A., Goicoechea P. G. and Gil L. (2005). Gene flow and hybridisation in a mixed oak forest (Quercus pyrenaica Willd. and Quercus petraea (Matts.) Liebl.) in central Spain. Heredity 95: 457–465

    Article  PubMed  CAS  Google Scholar 

  • Wakeley J. and Hey J. (1997). Estimating ancestral population parameters. Genetics 145: 847–855

    PubMed  CAS  Google Scholar 

  • Whittemore A. T. (2005). Genetic structure, lack of introgression and taxonomic status in the Celtis laevigata - Celtis reticulata complex (Cannabaceae). Syst. Bot. 30: 809–817

    Article  Google Scholar 

  • Zanetto A., Kremer A., Müller-Starck G. and Hattemer H. H. (1996). Inheritance of isozymes in pedunculate oak (Quercus robur L.). J. Heredity 87: 364–370

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gömöry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gömöry, D., Schmidtová, J. Extent of nuclear genome sharing among white oak species (Quercus L. subgen. Lepidobalanus (Endl.) Oerst.) in Slovakia estimated by allozymes. Plant Syst. Evol. 266, 253–264 (2007). https://doi.org/10.1007/s00606-007-0535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0535-0

Keywords

Navigation