Skip to main content
Log in

Tin disulfide nanoflakes decorated with gold nanoparticles for direct electrochemistry of glucose oxidase and glucose biosensing

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Previously, we have prepared nanoflake-like tin disulfide (SnS2) and used for the immobilization of proteins and biosensing. We have now modified an electrode with a composite consisting of nanoflake-like SnS2 decorated with gold nanoparticles (Au-NPs) and have immobilized glucose oxidase (GOx) on its surface in order to study its direct electrochemistry. Scanning electron microscopy, electrochemical impedance spectroscopy, Fourier transform IR spectroscopy and cyclic voltammetry were used to examine the interaction between GOx and the AuNP-SnS2 film. It is shown that the composite film has a larger surface area and offers a microenvironment that facilitates the direct electron transfer between enzyme and electrode surface. The immobilized enzyme retains its bioactivity and undergoes a surface-controlled, reversible 2-proton and 2-electron transfer reaction, with an apparent electron transfer rate constant of 3.87 s -1. Compared to the nanoflake-like SnS2-based glucose sensor, the GOx-based biosensor exhibits a lower detection limit (1.0 :M), a better sensitivity (21.8 mA M -1  cm -2), and a wider linear range (from 0.02 to 1.3 mM). The sensor displays excellent selectivity, good reproducibility, and acceptable stability. It was successfully applied to reagentless sensing of glucose at −0.43 V.

The AuNPs decorated nanoflake-like SnS2 (AuNPs–SnS2) composite is for the first time prepared and used to construct novel glucose biosensor nanoflake-like SnS2 was firstly synthesized and SEM image of the nanoflake-like SnS2 (a) and TEM images of the nanoflake-like SnS2 (b), AuNPs (c) and AuNPs–SnS2 (d) are shown in above figure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu Q, Lu XB, Li J, Yao L, Li JH (2007) Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens Bioelectron 22:3203

    Article  CAS  Google Scholar 

  2. Wang J (2012) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta 177:245

    Article  CAS  Google Scholar 

  3. Yang ZJ, Huang XC, Zhang YC, Li J, Xu Q, Hu XY (2012) Novel urchin-like In2O3-chitosan modified electrode for direct electrochemistry of glucose oxidase and biosensing. Electrochim Acta 70:325

    Article  CAS  Google Scholar 

  4. Deshpande NG, Sagade AA, Gudage YG, Lokhande CD (2007) Growth and characterization of tin disulfide (SnS2) thin film deposited by successive ionic layer adsorption and reaction (SILAR) technique. J Alloy Compd 436:421

    Article  CAS  Google Scholar 

  5. Panda SK, Antonakos A, Liarokapis E, Bhattacharya S, Chaudhuri S (2007) Optical properties of nanocrystalline SnS2 thin films. Mater Res Bull 42:576

    Article  CAS  Google Scholar 

  6. Yang C, Wang W, Shan Z, Huang F (2009) Craniofacial venous malformations: magnetic resonance imaging features that predict treatment outcome. J Solid State Chem 182:807

    Article  CAS  Google Scholar 

  7. Kim TJ, Kim C, Son D, Choi M, Park B (2007) Novel SnS2-nanosheet anodes for lithium-ion batteries. J Power Sources 167:529

    Article  CAS  Google Scholar 

  8. Seo J, Jang J, Park S, Kim C, Park B, Cheon J (2008) Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv Mater 20:4269

    Article  CAS  Google Scholar 

  9. Shi W, Huo L, Wang H, Zhang H, Yang J, Wei P (2006) Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures. Nanotechnology 17:2918

    Article  CAS  Google Scholar 

  10. Yang ZJ, Ren YY, Zhang YC, Li J, Li HB, Huang XC, Hu XY, Xu Q (2011) Nanoflake-like SnS2 matrix for glucose biosensing based on direct electrochemistry of glucose oxidase. Biosens Bioelectron 26:4337

    Article  CAS  Google Scholar 

  11. Willner I, Katz E (2000) Integration of layered redox-proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed 39:1180

    Article  Google Scholar 

  12. Meng L, Jin J, Yang GX, Lu TH, Zhang H, Cai CX (2009) Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal Chem 81:7271

    Article  CAS  Google Scholar 

  13. Liu SQ, Ju HX (2003) Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens Bioelectron 19:177

    Article  CAS  Google Scholar 

  14. Han X, Zhu YH, Yang XL, Li CZ (2010) Amperometric glucose biosensor based on platinum nanoparticle encapsulated with a clay. Microchim Acta 171:233

    Article  CAS  Google Scholar 

  15. Kang XH, Wang J, Wu H, Aksay IA, Liu J, Lin YH (2009) Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901

    Article  CAS  Google Scholar 

  16. Tang S, Wang XZ, Lei JP, Hu Z, Deng SY, Ju HX (2010) Pt-dispersed flower-like carbon nanosheet aggregation for low-overpotential electrochemical biosensing. Biosens Bioelectron 26:432

    Article  CAS  Google Scholar 

  17. Wang LX, Bai J, Bo XJ, Zhang XL, Guo LP (2011) A novel glucose sensor based on ordered mesoporous carbon-Au nanoparticles nanocomposites. Talanta 83:1386

    Article  CAS  Google Scholar 

  18. Liu SQ, Ju HX (2002) Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode. Anal Biochem 307:110

    Article  CAS  Google Scholar 

  19. Wu YH, Hu SS (2007) Direct electrochemistry of glucose oxidase in a colloid Au-dihexadecylphosphate composite film and its application to develop a glucose biosensor. Bioelectrochemistry 70:335

    Article  CAS  Google Scholar 

  20. German N, Ramanaviciene A, Voronovic J, Ramanavicius A (2010) Glucose biosensor based on graphite electrodes modified with glucose oxidase and colloidal gold nanoparticles. Microchim Acta 168:221

    Article  CAS  Google Scholar 

  21. Wu BY, Hou SH, Yin F, Zhao ZX, Wang YY, Wang XS, Chen Q (2007) Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Biosens Bioelectron 22:2854

    Article  CAS  Google Scholar 

  22. Xu XA, Jiang SJ, Hu Z, Liu SQ (2010) Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing. ACS Nano 4:4292

    Article  CAS  Google Scholar 

  23. Zhang YC, Du ZN, Li SY, Zhang M (2010) Novel synthesis and high visible light photocatalytic activity of SnS2 nanoflakes from SnCl2. 2H2O and S powders. Appl Catal B: Environ 95:153

    Article  CAS  Google Scholar 

  24. Doron A, Katz E, Willner I (1995) Organisation of Au colloids as monolayer films onto ITO glass surfaces: application of the metal colloid films as base interfaces to construct redox active monolayers. Langmuir 11:1313

    Article  CAS  Google Scholar 

  25. Willner B, Katz E, Willner I (2006) Electrical contacting of redox proteins by nanotechnological means. Curr Opin Biotechnol 17:589

    Article  CAS  Google Scholar 

  26. Deng SY, Jian GQ, Lei JP, Hu Z, Ju HX (2009) A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes. Biosens Bioelectron 25:373

    Article  CAS  Google Scholar 

  27. Bard J, Faulkner LR (2001) Electrochemistry methods, 2nd edn. Wiley, New York

    Google Scholar 

  28. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  29. Deng CY, Chen JH, Chen XL, Xiao CH, Nie LH, Yao SZ (2008) Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens Bioelectron 23:1272

    Article  CAS  Google Scholar 

  30. Guiseppi-Elie A, Lei C, Baughman RH (2002) Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13:559

    Article  CAS  Google Scholar 

  31. Zhang JD, Feng ML, Tachikawa H (2007) Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes. Biosens Bioelectron 22:3036

    Article  CAS  Google Scholar 

  32. Zhao S, Zhang K, Bai Y, Yang WW, Sun CQ (2006) Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: Direct electron transfer and electrocatalysis. Bioelectrochemistry 69:158

    Article  CAS  Google Scholar 

  33. Wang YL, Liu L, Li MG, Xu SD, Gao F (2011) Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay. Biosens Bioelectron 30:107

    Article  CAS  Google Scholar 

  34. Zheng H, Xue H, Zhang Y, Shen Z (2002) A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst. Biosens Bioelectron 17:541

    Article  CAS  Google Scholar 

  35. Uang Y, Chou TC (2003) Fabrication of glucose oxidase/polypyrrole biosensor by galvanostatic method in various pH aqueous solutions. Biosens Bioelectron 19:14

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (21075107, 21103148, 21005070 and 20975090), The Priority Academic Program Development of Jiangsu Higher Education Institution, Postdoctoral Science Foundation of China (20110491462), Postdoctoral Science Foundation of Jiangsu Province (1101020B, 1102142C) and the Open Research Fund of State Key Laboratory of Bioelectronics of Southeast University (2011E13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanjun Yang or Xiaoya Hu.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Esm 1

(DOC 160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Yang, Z., Zhang, Y. et al. Tin disulfide nanoflakes decorated with gold nanoparticles for direct electrochemistry of glucose oxidase and glucose biosensing. Microchim Acta 179, 265–272 (2012). https://doi.org/10.1007/s00604-012-0889-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0889-z

Keywords

Navigation