Skip to main content

Advertisement

Log in

Surface activation of plasma-patterned carbon nanotube based DNA sensing electrodes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have studied the effect of treatment of multiwalled carbon nanotubes (MWCNTs) for use in DNA-based biosensors with oxygen plasma. Well-patterned MWCNT electrodes were photolithographically fabricated on glass substrates. Pure oxygen was used for etching and functionalization of the MWCNT film in a lab-made plasma chamber. The resulting electrodes exhibited a dramatic change in the morphology of their surface, the chemical composition, and the electrochemical properties in terms of peak current and peak potential separation. The electrodes also showed increased DNA immobilization efficiency and much higher sensitivity in the detection of target DNA as compared to non-treated MWCNT electrodes. Plasma treatment was optimized and electrodes were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and differential pulse voltammetry.

Well-patterned MWCNT electrodes were photolithographically fabricated on glass substrates. Pure oxygen was used for etching and functionalization of the MWCNT film. The electrodes showed increased DNA immobilization efficiency and much higher sensitivity in the detection of target DNA as compared to non-treated MWCNT electrodes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MSP, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103:8116–8121

    Article  CAS  Google Scholar 

  3. Xing YC, Li L, Chusuei CC, Hull RV (2005) Sonochemical oxidation of multiwalled carbon nanotubes. Langmuir 21(9):4185–4190. doi:10.1021/la047268e

    Article  CAS  Google Scholar 

  4. Merkoçi A (2005) Carbon nanotubes in analytical sciences. Microchim Acta 152(3–4):157–174. doi:10.1007/s00604-005-0439-z

    Google Scholar 

  5. Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12(7):1952–1958. doi:10.1039/b201013p

    Article  CAS  Google Scholar 

  6. Merkoci A, Pumera M, Llopis X, Perez B, del Valle M, Alegret S (2005) New materials for electrochemical sensing VI: carbon nanotubes. TrAC, Trends Anal Chem 24(9):826–838. doi:10.1016/j.trac.2005.03.019

    Article  CAS  Google Scholar 

  7. Yang T, Zhang W, Du M, Jiao K (2008) A PDDA/poly(2,6-pyridinedicarboxylic acid)-CNTs composite film DNA electrochemical sensor and its application for the detection of specific sequences related to PAT gene and NOS gene. Talanta 75(4):987–994. doi:10.1016/j.talanta.2007.12.049

    Article  CAS  Google Scholar 

  8. Min K, Yoo YJ (2009) Amperometric detection of dopamine based on tyrosinase-SWNTs-Ppy composite electrode. Talanta 80(2):1007–1011

    Article  CAS  Google Scholar 

  9. Zhou N, Yang T, Jiang C, Du M, Jiao K (2009) Highly sensitive electrochemical impedance spectroscopic detection of DNA hybridization based on Au-nano-CNT/PAN(nano) films. Talanta 77(3):1021–1026. doi:10.1016/j.talanta.2008.07.058

    Article  CAS  Google Scholar 

  10. Lee TMH, Li LL, Hsing IM (2003) Enhanced electrochemical detection of DNA hybridization based on electrode-surface modification. Langmuir 19(10):4338–4343. doi:10.1021/la0270385

    Article  CAS  Google Scholar 

  11. Fang HT, Liu CG, Chang L, Feng L, Min L, Cheng HM (2004) Purification of single-wall carbon nanotubes by electrochemical oxidation. Chem Mater 16(26):5744–5750. doi:10.1021/cm035263h

    Article  CAS  Google Scholar 

  12. Zhao W, Wang H, Qin X, Wang X, Zhao Z, Miao Z, Chen L, Shan M, Fang Y, Chen Q (2009) A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode. Talanta 80(2):1029–1033

    Article  CAS  Google Scholar 

  13. Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN (2002) Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes. Electroanalysis 14(3):225–230

    Article  CAS  Google Scholar 

  14. Yadegari H, Jabbari A, Heli H, Moosavi-Movahedi AA, Karimian K, Khodadadi A (2008) Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode. Electrochim Acta 53(6):2907–2916. doi:10.1016/j.electacta.2007.11.003

    Article  CAS  Google Scholar 

  15. Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN (2002) Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode. Microchem J 73(3):325–333

    Article  CAS  Google Scholar 

  16. Qiu Y, Fan H, Liu X, Ai S, Tang T, Han R (2010) Electrochemical detection of DNA damage induced by in situ generated bisphenol A radicals through electro-oxidation. Microchim Acta 171(3–4):363–369. doi:10.1007/s00604-010-0437-7

    Article  CAS  Google Scholar 

  17. Lee CS, Baker SE, Marcus MS, Yang WS, Eriksson MA, Hamers RJ (2004) Electrically addressable biomolecular functionalization of carbon nanotube and carbon nanofiber electrodes. Nano Lett 4(9):1713–1716. doi:10.1021/nl048995x

    Article  CAS  Google Scholar 

  18. Li J, Ng HT, Cassell A, Fan W, Chen H, Ye Q, Koehne J, Han J, Meyyappan M (2003) Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 3(5):597–602. doi:10.1021/nl0340677

    Article  CAS  Google Scholar 

  19. Cai H, Cao XN, Jiang Y, He PG, Fang YZ (2003) Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal Bioanal Chem 375(2):287–293. doi:10.1007/s00216-002-1652-9

    CAS  Google Scholar 

  20. Lee J-Y, Park E-J, Lee C-J, Kim S-W, Pak JJ, Min NK (2009) Flexible electrochemical biosensors based on O2 plasma functionalized MWCNT. Thin Solid Films 517(14):3883–3887. doi:10.1016/j.tsf.2009.01.130

    Article  CAS  Google Scholar 

  21. Wang R, Xue C, Gao M, Qi H, Zhang C (2010) Ultratrace voltammetric method for the detection of DNA sequence related to human immunodeficiency virus type 1. Microchim Acta 172(3–4):291–297. doi:10.1007/s00604-010-0490-2

    Google Scholar 

  22. Chen G, Shin DH, Kim S, Roth S, Lee CJ (2010) Improved field emission stability of thin multiwalled carbon nanotube emitters. Nanotechnology 21

  23. Lin XH, Wu P, Chen W, Zhang YF, Xia XH (2007) Electrochemical DNA biosensor for the detection of short DNA species of chronic myelogenous leukemia by using methylene blue. Talanta 72(2):468–471. doi:10.1016/j.talanta.2006.11.015

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Grant No. K20601000002-07E0100-00210 from Korea Foundation for International Cooperation of Science & Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Ki Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, E.J., Jin, JH., Kim, J.H. et al. Surface activation of plasma-patterned carbon nanotube based DNA sensing electrodes. Microchim Acta 174, 231–238 (2011). https://doi.org/10.1007/s00604-011-0605-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0605-4

Keywords

Navigation