Skip to main content
Log in

PNA-Modified Magnetic Nanoparticles and Their Hybridization with Single-Stranded DNA Target: Surface Enhanced Raman Scatterings Study

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract.

A 4-pyridyldithiol-derivatized peptide nucleic acid (PNA), which was designed to recognize a specific gene, was attached to 3-mercapropropyloxysilane coated magnetic nanoparticles (MNPs) via a thiol-disulfide exchange reaction. Subsequently, PNA-functionalized magnetic nanoparticles (PMNPs) were prepared. Sequentially the PMNPs were challenged with non-complementary and perfect-match DNA targets. The entire procedure was monitored using surface-enhanced Raman scattering (SERS). The results showed that the PMNPs were able to efficiently hybridize with the perfect-match ssDNA target and showed no affinity towards non-complementary DNA. This approach may provide a means of direct and label-free gene analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • N C Seeman (2001) Nano Lett 1 22 Occurrence Handle10.1021/nl000182v Occurrence Handle1:CAS:528:DC%2BD3cXosVSisro%3D

    Article  CAS  Google Scholar 

  • J P H Dai (2003) Proc Natl Acad Sci U.S.A 100 4984 Occurrence Handle10.1073/pnas.0437964100

    Article  Google Scholar 

  • J Hahm C Lieber (2004) Nano Lett 4 1 Occurrence Handle10.1021/nl034853b

    Article  Google Scholar 

  • E Katz I Willner (2004) Angew Chem Int Ed 43 6042 Occurrence Handle1:CAS:528:DC%2BD2cXhtVKgsr3P

    CAS  Google Scholar 

  • J Wang A N Kawde A Erdem M Salazar (2001) Analyst 126 2020 Occurrence Handle1:CAS:528:DC%2BD3MXotFGjsLs%3D

    CAS  Google Scholar 

  • J Wang D Xu A Erdem R Polsky M A Salazar (2002) Talanta 56 931 Occurrence Handle1:CAS:528:DC%2BD38XisV2is78%3D

    CAS  Google Scholar 

  • E Palecek M Fojta F Jelen (2002) Bioelectrochemistry 56 85 Occurrence Handle10.1016/S1567-5394(02)00025-7 Occurrence Handle1:CAS:528:DC%2BD38XjsFynsb4%3D

    Article  CAS  Google Scholar 

  • R Chakrabarti A M Klibanov (2003) J Am Chem Soc 125 12531 Occurrence Handle10.1021/ja035399g Occurrence Handle1:CAS:528:DC%2BD3sXntlymtbk%3D

    Article  CAS  Google Scholar 

  • M Egholm O Buchardt L Christensen C Behrens S M Freier D A Driver R H Berg S K Kim B Norden P E Nielsen (1993) Nature 365 566 Occurrence Handle10.1038/365566a0 Occurrence Handle1:CAS:528:DyaK2cXntFOksQ%3D%3D

    Article  CAS  Google Scholar 

  • T Ratilainen A Holme’n E Tuite P E Nielsen B Norde’n (2000) Biochemistry 39 7781 Occurrence Handle10.1021/bi000039g Occurrence Handle1:CAS:528:DC%2BD3cXjslajtLc%3D

    Article  CAS  Google Scholar 

  • G L Igloi (1998) Proc Natl Acad Sci 95 8562 Occurrence Handle10.1073/pnas.95.15.8562 Occurrence Handle1:CAS:528:DyaK1cXkvFamu7Y%3D

    Article  CAS  Google Scholar 

  • H B Shen J F Xia H F Yang (2001) Spectroscopy Spectral Anal (in Chinese) 21 798 Occurrence Handle1:CAS:528:DC%2BD38XlslWksQ%3D%3D

    CAS  Google Scholar 

  • N Isola D L Stokes T Vo-Dinh (1998) Anal Chem 70 1352 Occurrence Handle10.1021/ac970901z Occurrence Handle1:CAS:528:DyaK1cXhtlKisLw%3D

    Article  CAS  Google Scholar 

  • T Vo-Dinh L R Allain D L Stokes (2002) J Raman Spectrosc 33 511 Occurrence Handle10.1002/jrs.883 Occurrence Handle1:CAS:528:DC%2BD38XmtVehu7k%3D

    Article  CAS  Google Scholar 

  • L R Allain T Vo-Dinh (2002) Anal Chim Acta 469 149 Occurrence Handle10.1016/S0003-2670(01)01537-9 Occurrence Handle1:CAS:528:DC%2BD38XotFygtrY%3D

    Article  CAS  Google Scholar 

  • M Culha D L Stokes L R Allain T Vo-Dinh (2003) Anal Chem 75 6196 Occurrence Handle10.1021/ac0346003 Occurrence Handle1:CAS:528:DC%2BD3sXnsl2nu7w%3D

    Article  CAS  Google Scholar 

  • D Graham W E Smith A M T Linacre C H Munro N D Watson P C White (1997) Anal Chem 69 4703 Occurrence Handle10.1021/ac970657b Occurrence Handle1:CAS:528:DyaK2sXnt1Sgs7w%3D

    Article  CAS  Google Scholar 

  • S Santra R Tapec N Theodoropoulou J Bobson A Hebard W Tan (2001) Langmuir 17 2900 Occurrence Handle10.1021/la0008636 Occurrence Handle1:CAS:528:DC%2BD3MXislKhtr4%3D

    Article  CAS  Google Scholar 

  • G Hernandez R Rodriguez (1999) J Non-Cryst Solids 246 209 Occurrence Handle10.1016/S0022-3093(99)00073-3 Occurrence Handle1:CAS:528:DyaK1MXit1Sgt7w%3D

    Article  CAS  Google Scholar 

  • N B Colthup L H Daly S E Wiberley (1990) Introduction to infrared and raman spectroscopy, 3rd edn. Academic Press New York 136

    Google Scholar 

  • F L Galeener J C Mickelsen N M Johnson (1978) The physics of SiO2 and its interfaces. Pergamon New York 221

    Google Scholar 

  • M Yoshikawa K Iwagami N Morita T Matsunobe H Ishida (1997) Thin Solid Films 310 167 Occurrence Handle10.1016/S0040-6090(97)00393-3 Occurrence Handle1:CAS:528:DyaK1cXnt1yisw%3D%3D

    Article  CAS  Google Scholar 

  • J L Pan (1986) The applications of raman spectrum in organic chemistry (in Chinese). Chemistry Industry Press Beijing 75

    Google Scholar 

  • J S Suh M Moskovits (1986) J Am Chem Soc 108 4711 Occurrence Handle1:CAS:528:DyaL28Xksl2gsLo%3D

    CAS  Google Scholar 

  • H B Shen W J Zhou H F Yang (2002) Acta Phys Chin Sin (in Chinese) 18 490 Occurrence Handle1:CAS:528:DC%2BD38XkvVGntro%3D

    CAS  Google Scholar 

  • T M Herne A M Ahern R L Carrell (1991) J Am Chem Soc 113 846 Occurrence Handle10.1021/ja00003a018 Occurrence Handle1:CAS:528:DyaK3MXmt1Krtg%3D%3D

    Article  CAS  Google Scholar 

  • X M Dou Y M Jung H Yamamoto S Doi Y Ozaki (1999) Appl Spectroscopy 53 133 Occurrence Handle1:CAS:528:DyaK1MXhtlamt7o%3D

    CAS  Google Scholar 

  • L Guo Q J Huang X Y Li S Yang (2001) Phys Chem Chem Phys 3 1661 Occurrence Handle10.1039/b009951l Occurrence Handle1:CAS:528:DC%2BD3MXis1Sitr0%3D

    Article  CAS  Google Scholar 

  • Y D Zhao D W Pang S Hu Z L Wang J K Cheng Y P Qi H P Dai B W Mao Z Q Tian J Luo Z H Lin (1999) Anal Chim Acta 388 93 Occurrence Handle1:CAS:528:DyaK1MXisV2htrc%3D

    CAS  Google Scholar 

  • F R Dollish W G Fateley F F Bentley (1974) Characteric raman frequencies of organic compounds. Wiley New York 92

    Google Scholar 

  • X M Dou Y M Jung Z Q Cao Y Ozaki (1999) Appl Spectroscopy 53 1440 Occurrence Handle1:CAS:528:DyaK1MXnsV2rtbw%3D

    CAS  Google Scholar 

  • G J Thomas SuffixJr A H J Wang (1988) Nucleic Acids & Molecular Biol 2 1

    Google Scholar 

  • M Tsuboi S Takahashi S Muraishi T Kajiura (1971) Bull Chem Japan 44 2921 Occurrence Handle1:CAS:528:DyaE38Xlt1ahuw%3D%3D

    CAS  Google Scholar 

  • E W Small W L Peticolas (1971) Biopolymers 10 69 Occurrence Handle1:CAS:528:DyaE3MXntFOitA%3D%3D

    CAS  Google Scholar 

  • T Ratilanien A Holmen E Tuite G Haaima L Christensen P E Nielsen B Norden (1998) Biochemistry 37 12331

    Google Scholar 

  • M Saviano A Romanelli E Bucci C Pedone C Mischiati N Bianchi G Feriotto M Borgatti (2000) R J Biomol Struct Dyn 18 353 Occurrence Handle1:CAS:528:DC%2BD3MXoslSj

    CAS  Google Scholar 

  • W H Ke D W Yu J Z Wu (1999) Spectrochim Acta, Part A 55 1081

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hebai Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Shen, H., Feng, J. et al. PNA-Modified Magnetic Nanoparticles and Their Hybridization with Single-Stranded DNA Target: Surface Enhanced Raman Scatterings Study. Microchim Acta 153, 15–20 (2006). https://doi.org/10.1007/s00604-005-0460-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-005-0460-2

Navigation