Skip to main content
Log in

Pseudospin Symmetry in Position-Dependent Mass Dirac-Coulomb Problem by Using Laplace Transform and Convolution Integral

  • Published:
Few-Body Systems Aims and scope Submit manuscript

A Correction to this article was published on 09 October 2023

This article has been updated

Abstract

The exact pseudospin symmetry solutions of Dirac equation with position-dependent mass (PDM) Coulomb potential in the presence of Colulomb-like tensor potential are obtained by using Laplace transform (LT) approach. The energy eigenvalue equation of the Dirac particles is found and some numerical results are given. By using Laplace convolution integral, the corresponding radial wave functions are presented in terms of confluent hypergeometric functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Hecht K.T., Adler A.: Generalized seniority for favored J ≠ 0 pairs in mixed configurations. Nucl. Phys. A 137, 129 (1969)

    Google Scholar 

  2. Wong M.K.F., Yeh H.Y.: Simplified solution of the Dirac equation with a Coulomb potential. Phys. Rev. D 25, 3396 (1982)

    MathSciNet  Google Scholar 

  3. Dong S.H.: The Dirac equation with a Coulomb potential in D dimensions. J. Phys. A Math. Gen. 36, 4977 (2003)

    Article  MATH  Google Scholar 

  4. Alhaidari A.D.: Solution of the Dirac equation with position-dependent mass in the Coulomb field. Phys. Lett. A 322, 72 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Hamzavi M., Rajabi A.A., Hassanabadi H.: Exact pseudospin symmetry solution of the Dirac equation for spatially-dependent mass Coulomb potential including a Coulomb-like tensor interaction via asymptotic iteration method. Phys. Lett. A 374, 4303 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Ikhdair S.M., Sever R.: Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential. App. Math. Comp. 216, 545 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Lisboa R., Malheiro M., De Castro A.S., Alberto P., Fiolhais M.: Pseudospin symmetry and the relativistic harmonic oscillator. Phys. Rev. C 69, 024319 (2004)

    Google Scholar 

  8. Ginocchio J.N.: U(3) and Pseudo-U(3) symmetry of the relativistic harmonic oscillator. Phys. Rev. Lett. 95, 252501 (2005)

    Google Scholar 

  9. Gou J.Y., Fang X.Z., Xu F.X.: Pseudospin symmetry in the relativistic harmonic oscillator. Nucl. Phys. A 757, 411 (2005)

    Google Scholar 

  10. Alhaidari A.D., Bahlouli H., Al-Hasan A.: Dirac and Klein-Gordon equations with equal scalar and vector potentials. Phys. Lett. A 349, 87 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Alberto P., De Castro A.S., Malheiro M.: Spin and pseudospin symmetries and the equivalent spectra of relativistic spin-1/2 and spin-0 particles. Phys. Rev. C 75, 047303 (2007)

    Google Scholar 

  12. Qiang W.C., Zhou R.S., Gao Y.: Application of the exact quantization rule to the relativistic soultion of the rotational Morse potential with pseudospin symmetry. J. Phys. A: Math. Theor. 40, 1677 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Bayrak O., Boztosun I.: The pseudospin symmetric solution of the Morse potential for any κ state. J. Phys. A: Math. Theor. 40, (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berkdemir C.: Pseudospin symmetry in the relativistic Morse potential including the spin-orbit coupling term. Nucl. Phys. A 770, (2006)

    Google Scholar 

  15. Soylu A., Bayrak O., Boztosun I.: An approximate solution of Dirac-Hulthén problem with pseudospin and spin symmetry for any κ state. J. Math. Phys. 48, (2007)

    MathSciNet  Google Scholar 

  16. Soylu A., Bayrak O., Boztosun I.: κ state solutions of the Dirac equation for the Eckart potential with pseudospin and spin symmetry. J. Phys. A: Math. Theor. 41, 065308 (2008)

    MathSciNet  Google Scholar 

  17. Zhang L.H., Li X.P., Jia C.S.: Analytical approximation to the solution of the Dirac equation with the Eckart potential including the spin–orbit coupling term. Phys. Lett. A 372, 2201 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Liu X.Y., Wei G.F., Long C.Y.: Arbitrary wave relativistic bound state solutions for the Eckart potential. Int. J. Theor. Phys. 48, (2009)

    MathSciNet  MATH  Google Scholar 

  19. Ikot A.N.: Solutions of Dirac equation for generalized hyperbolical potential including Coulomb-Like tensor potential with spin symmetry. Few-Body Syst. 53, 549 (2012)

    Google Scholar 

  20. Jia C.S., Liu J.Y., Wang P.Q., Lin X.: Approximate analytical solutions of the Dirac equation with the hyperbolic potential in the presence of the spin symmetry and pseudo-spin symmetry. Int. J. Theor. Phys. 48, 2633 (2009)

    MATH  Google Scholar 

  21. Eshghi M., Mehraban H.: Eigen spectra for q-Deformed hyperbolic scarf potential including a cooulomb-like tensor interaction. J. Sci. Res. 3(2), 239 (2011)

    Google Scholar 

  22. Bastard, G.: Wave mechanics applied to semiconductor heterostructure, Les Editin de Physique, Les Ulis (1988)

  23. Arias, F., et al.: Effective mass of one 4He atom in liquid 3He. Phys. Rev. B 50, 4248 (1997)

    Google Scholar 

  24. Weisbuch C., Vinter B.: Quantum semiconductor heterostructure. Academic Press, New York (1993)

    Google Scholar 

  25. Serra L., Lipparini E.: Spin response of unpolarized quantum dots. Europhys. Lett. 40, 667 (1997)

    Google Scholar 

  26. Koç R., Koca M.: A systematic study on the exact solution of the position dependent mass Schrödinger equation. J. Phys. A: Math. Gen. 36, 8105 (2003)

    MATH  Google Scholar 

  27. Jia C.S.,de Souza Dutra A.: Extension of PT-symmetric quantum mechanics to the Dirac theory with position-dependent mass. Ann. Phys. 323, 566 (2008)

    MATH  Google Scholar 

  28. Jia C.S. et al.: Relativistic confinement of neutral fermions with partially exactly solvable and exactly solvable PT-symmetric potentials in the presence of position-dependent mass. Int. J. Theor. Phys. 47, 2513 (2008)

    MATH  Google Scholar 

  29. Xu Y., He S., Jia C.S.: Approximate analytical solutions of the Dirac equation with the Pöschl–Teller potential including the spin–orbit coupling term. J. Phys. A Math. Theor. 41, 255302 (2008)

    MathSciNet  Google Scholar 

  30. Dekar L. et al.: An exactly soluble Schrödinger equation with smooth position-dependent mass. J. Math. Phys. 39, 2551 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Sever R., Tezcan C.: Exact solutions of Schrödinger equation for the modified Kratzer’s molecular potential with position-dependent mass. Int. J. Mod. Phys. E 17, 1327 (2008)

    Google Scholar 

  32. Ikhdair S.M., Sever R.: Exact solutions of the modified Kratzer potential plus ring-shaped potential in the D-dimensional Schrödinger equation by Nikiforov-Uvarov method. Int. J. Mod. Phys. C 20(3), 361 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Ikhdair S.M., Sever R.: Any l-state improved quasi-exact analytical solutions of the spatially dependent mass Klein–Gordon equation for the scalar and vector Hulthén potentials. Phys. Scripta 79, 035002 (2009)

    Google Scholar 

  34. Ikhdair S.M., Sever R.: Improved analytical approximation to arbitrary l-state solutions of the Schrödinger equation for the hyperbolical potential. Ann. Phys. 18, 189 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Schiff J.L.: The Laplace Transform: Theory and Applications. Springer, New York (1999)

    MATH  Google Scholar 

  36. Chen G.: The recursion relations for the N-dimensional harmonic oscillator. Phys. Lett. A 328, 123 (2004)

    MATH  Google Scholar 

  37. Chen G.: The recurrence relations of the radial wave functions for the two-dimensional Coulomb potential. Phys. Scr. 71, 233 (2005)

    MATH  Google Scholar 

  38. Ran Y., Xue L., Hu S., Su R.K.: On the Coulomb-type potential of the one-dimensional Schrödinger equation. J. Phys. A: Math. Gen. 33, 9265 (2000)

    MathSciNet  MATH  Google Scholar 

  39. Chen G.: The exact solutions of the Schrödinger equation with the Morse potential via Laplace transforms. Phys. Lett. A 326, 55 (2004)

    MATH  Google Scholar 

  40. Ortakaya S.: Exact solutions of Klein-Gordon equation with ring-shaped oscillator by using Laplace integral transform. Chin. Phys. B 21, 070303 (2012)

    Google Scholar 

  41. DeGrande-De Kimpe N., Khrennikov A.Y.: The non-Archimedian Laplace transform. Bull. Belg. Math. Soc. 3, 225 (1996)

    MathSciNet  Google Scholar 

  42. Arda A., Sever R.: Exact spin and pseudo-spin symmetries of the Dirac-Kratzer problem with a tensor potential via Laplace transform approach. Mod. Phys. Lett. A 27, 1250171 (2012)

    Google Scholar 

  43. Eshghi, M., Hamzavi, M., Ikhdair, S.M.: Exact solutions of a spatially dependent mass Dirac equation for Coulomb field plus tensor interaction via laplace transformation method. Adv. High. En. Phys. (2012). doi:10.1155/2012/873619

  44. Greiner W.: Relativistic quantum mechanics. Springer-Verlag, New York (1981)

    Google Scholar 

  45. DeSouza Dutra A., Hott M.: Dirac equation exact solutions for generalized asymmetrical Hartmann potentials. Phys. Lett. A 356, 215 (2006)

    MathSciNet  Google Scholar 

  46. Berkdemir C., Cheng Y.F.: On the exact solutions of the Dirac equation with a novel angle-dependent potential. Phys. Scr. 79, 035003 (2009)

    Google Scholar 

  47. Ikhdair S.M., Sever R.: Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules. J. Math. Chem. 45(4), 1137 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Gradshteyn I.S., Ryzhik I.M.: Table of integrals, series, and products. Academic Press, San Diego (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Ortakaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortakaya, S. Pseudospin Symmetry in Position-Dependent Mass Dirac-Coulomb Problem by Using Laplace Transform and Convolution Integral. Few-Body Syst 54, 2073–2080 (2013). https://doi.org/10.1007/s00601-013-0709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-013-0709-y

Keywords

Navigation