Skip to main content
Log in

Scalar-Particle Self-Energy Amplitudes and Confinement in Minkowski Space

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We analyze the analytic structure of the Covariant Spectator Theory (CST) contribution to the self-energy amplitude for a scalar particle in a \({\phi^2\chi}\) theory. To this end we derive dispersion relations in 1+1 and in 3+1 dimensional Minkowski space. The divergent loop integrals in 3+1 dimensions are regularized using dimensional regularization. We find that the CST dispersion relations exhibit, in addition to the usual right-hand branch cut, also a left-hand cut. The origin of this “spectator” left-hand cut can be understood in the context of scattering for a scalar \({\phi^2\chi^2}\) -type theory. If the interaction kernel contains a linear confining component, its contribution to the self-energy vanishes exactly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jegerlehner F., Nyffeler A.: The muon g-2. Phys. Rep. 477, 1–110 (2009). doi:10.1016/j.physrep.2009.04.003

    Article  ADS  Google Scholar 

  2. Friman, B., Höhne, C., Knoll, J., Leupold, S., Randrup, J., Rapp, R.: The CBM Physics Book: Compressed Baryonic Matter in Laboratory Experiments. Lecture Notes in Physics, Springer, Berlin (2011)

  3. Maris P., Roberts C.D.: Dyson–Schwinger equations: a tool for hadron physics. Int. J. Mod. Phys. E12, 297–365 (2003). doi:10.1142/S0218301303001326

    Article  ADS  Google Scholar 

  4. Wick G.: Properties of Bethe–Salpeter wave functions. Phys. Rev. 96, 1124–1134 (1954). doi:10.1103/PhysRev.96.1124

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Zuilhof M., Tjon J.: Electromagnetic properties of the deuteron and the Bethe–Salpeter equation with one boson exchange. Phys. Rev. C22, 2369–2382 (1980). doi:10.1103/PhysRevC.22.2369

    ADS  Google Scholar 

  6. Carbonell J., Karmanov V.: Solutions of the Bethe–Salpeter equation in Minkowski space and applications to electromagnetic form factors. Few Body Syst. 49, 205–222 (2011). doi:10.1007/s00601-010-0133-5

    Article  ADS  Google Scholar 

  7. Carbonell J., Karmanov V., Mangin-Brinet M.: Electromagnetic form factor via Bethe–Salpeter amplitude in Minkowski space. Eur. Phys. J. A 39, 53–60 (2009). doi:10.1140/epja/i2008-10690-6

    Article  ADS  Google Scholar 

  8. Gross F.: Three-dimensional covariant integral equations for low-energy systems. Phys. Rev. 186, 1448 (1969)

    Article  ADS  Google Scholar 

  9. Gross F.: Relativistic few-body problem. I. Two-body equations. Phys. Rev. C 26, 2203 (1982)

    Article  ADS  Google Scholar 

  10. Gross F.: Relativistic few-body problem. II. Three-body equations and three-body forces. Phys. Rev. C 26, 2226 (1982)

    Article  ADS  Google Scholar 

  11. Stadler A., Gross F.: Covariant spectator theory: foundations and applications. Few Body Syst. 49, 91–110 (2011)

    Article  ADS  Google Scholar 

  12. Nieuwenhuis T., Tjon J.: Nonperturbative study of generalized ladder graphs in a \({\varphi^2 \chi}\) theory. Phys. Rev. Lett. 77, 814–817 (1996). doi:10.1103/PhysRevLett.77.814

    Article  ADS  Google Scholar 

  13. Gross F., Milana J.: Covariant, chirally symmetric, confining model of mesons. Phys. Rev. D 43, 2401–2417 (1991). doi:10.1103/PhysRevD.43.2401

    Article  ADS  Google Scholar 

  14. Gross F., Milana J.: Decoupling confinement and chiral symmetry breaking: an explicit model. Phys. Rev. D 45, 969–974 (1992). doi:10.1103/PhysRevD.45.969

    Article  ADS  Google Scholar 

  15. Gross F., Milana J.: Goldstone pion and other mesons using a scalar confining interaction. Phys. Rev. D 50, 3332–3349 (1994). doi:10.1103/PhysRevD.50.3332

    Article  ADS  Google Scholar 

  16. Savkli C., Gross F.: Quark-antiquark bound states in the relativistic spectator formalism. Phys. Rev. C 63, 035–208 (2001). doi:10.1103/PhysRevC.63.035208

    Article  Google Scholar 

  17. Nambu Y., Jona-Lasinio G.: Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122, 345–358 (1961). doi:10.1103/PhysRev.122.345

    Article  ADS  Google Scholar 

  18. Becher T., Leutwyler H.: Baryon chiral perturbation theory in manifestly Lorentz invariant form. Eur. Phys. J. C 9, 643–671 (1999)

    ADS  Google Scholar 

  19. Gross, F.: Construction of covariant effective field theories. Unpublished (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Stadler.

Additional information

Dedicated to Professor Henryk Witala at the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biernat, E.P., Gross, F., Peña, T. et al. Scalar-Particle Self-Energy Amplitudes and Confinement in Minkowski Space. Few-Body Syst 54, 2283–2301 (2013). https://doi.org/10.1007/s00601-012-0491-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-012-0491-2

Keywords

Navigation