Skip to main content

Advertisement

Log in

Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Thiamine (vitamin B1) is an essential cofactor in most organisms and is required at several stages of anabolic and catabolic intermediary metabolism, such as intracellular glucose metabolism, and is also a modulator of neuronal and neuro-muscular transmission. Lack of thiamine or defects in its intracellular transport can cause a number of severe disorders. Thiamine acts as a coenzyme for transketolase (TK) and for the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase complexes, enzymes which play a fundamental role for intracellular glucose metabolism. In particular, TK is able to shift excess fructose-6-phosphate and glycerhaldeyde-3-phosphate from glycolysis into the pentose-phosphate shunt, thus eliminating these potentially damaging metabolites from the cytosol. Diabetes might be considered a thiamine-deficient state, if not in absolute terms at least relative to the increased requirements deriving from accelerated and amplified glucose metabolism in non-insulin dependent tissues that, like the vessel wall, are prone to complications. A thiamine/TK activity deficiency has been described in diabetic patients, the correction of which by thiamine and/or its lipophilic derivative, benfotiamine, has been demonstrated in vitro to counteract the damaging effects of hyperglycaemia on vascular cells. Little is known, however, on the positive effects of thiamine/benfotiamine administration in diabetic patients, apart from the possible amelioration of neuropathic symptoms. Clinical trials on diabetic patients would be necessary to test this vitamin as a potential and inexpensive approach to the prevention and/or treatment of diabetic vascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jansen B, Donath W (1926) Geneeskundig Tijdschrift voor Nederlandsch-Indie 66:1–2 (Reprinted as (1982) The isolation of the anti beri beri vitamin. Nutr Rev 40:53–55)

    Google Scholar 

  2. Frank RAW, Leeper FJ, Luisi BF (2007) Structure, mechanism and catalytic duality of thiamine-dependent enzymes. Cell Mol Life Sci 64:892–905

    PubMed  CAS  Google Scholar 

  3. Bender DA (1999) Optimum nutrition: thiamin, biotin and pantothenate. Proc Nutr Soc 58:427–433

    PubMed  CAS  Google Scholar 

  4. Stryer L (1988) Biochemistry. Freeman WH and Company, New York

    Google Scholar 

  5. Harper C (1979) Wernicke’s encephalopathy, a more common disease than realised (a neuropathological study of 51 cases). J Neurol Neurosurg Psychol 42:226–231

    CAS  Google Scholar 

  6. Neufeld EJ, Fleming JC, Tartaglini E, Steinkamp MP (2001) Thiamine-responsive megaloblastic anemia syndrome: a disorder of high-affinity thiamine transport. Blood Cells Mol Dis 27:135–138

    PubMed  CAS  Google Scholar 

  7. Thomson AD (2000) Mechanisms of vitamin deficiency in chronic alcohol misusers and the development of the Wernicke–Korsakoff syndrome. Alcohol Alcohol Suppl 35:2–7

    PubMed  CAS  Google Scholar 

  8. Abbas ZG, Swai AB (1997) Evaluation of the efficacy of thiamine and pyridoxine in the treatment of symptomatic diabetic peripheral neuropathy. East Afr Med J 74:803–808

    PubMed  CAS  Google Scholar 

  9. Wu S, Ren J (2006) Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-alpha. Neurosci Lett 394:158–162

    PubMed  CAS  Google Scholar 

  10. Hoyumpa AM Jr, Strickland R, Sheehan JJ, Yarborough G, Nichols S (1982) Dual system of intestinal thiamine transport in humans. J Lab Clin Med 99:701–708

    PubMed  CAS  Google Scholar 

  11. Rindi G (1984) Thiamine absorption by small intestine. Acta Vitaminol Enzymol 6:47–55

    PubMed  CAS  Google Scholar 

  12. Rindi G, Lafarenza U (2000) Thiamine intestinal transport and related issues: recent aspects. PSEBM 224:246–255

    CAS  Google Scholar 

  13. Rindi G, Ferrari G (1997) Thiamine transport by human intestine in vitro. Experientia 33:211–213

    Google Scholar 

  14. Lafarenza U, Patrini C, Alvisi C, Faelli A, Licandro A, Rindi G (1997) Thiamine uptake in human intestinal biopsy specimen, including observations from a patient with acute thiamine deficiency. Am J Clin Nutr 66:320–326

    Google Scholar 

  15. Patrini C, Lafarenza U, Gastaldi G, Verri A, Ferrari G, Rindi G (1996) Effects of insulin on thiamine intestinal transport in rat everted jejunal sacs. J Physiol (Lond) 493:100S–101S

    Google Scholar 

  16. Lafarenza U, Gastaldi G, Verri A, Rindi G (1995) Effects of thyroid hormone and insulin on thiamine intestinal transport in vitro. Ital J Gastroenterol 27:129

    Google Scholar 

  17. Fujimara M, Sasakawa S, Itokawa Y, Ikeda K (1964) Affinity of thiamine propyl disulfide-S35 to organs. J Vitaminol (Kyoto) 10:79–87

    Google Scholar 

  18. Fujimara M (1976) Allithiamine and its properties. J Nutr Sci Vitaminol (Tokyo) 22(Suppl):57–62

    Google Scholar 

  19. Baker H, Frank O (1976) Absorption, utilization and clinical effectiveness of allithiamines compared to water-soluble thiamines. J Nutr Sci Vitaminol (Tokyo) 22(Suppl):63–68

    Google Scholar 

  20. Greb A, Bitsch R (1998) Comparative bioavailability of various thiamine derivatives after oral administration. Int J Clin Pharmacol Ther 36:216–221

    PubMed  CAS  Google Scholar 

  21. Schreeb KH, Freudenthaler S, Vormfelde SV, Gundert-Remy U, Gleiter CH (1997) Comparative bioavailability of two vitamin B1 preparations: benfotiamine and thiamine mononitrate. Eur J Pharmacol 52:319–320

    CAS  Google Scholar 

  22. Loew D (1996) Pharmacokinetics of thiamine derivatives especially of benfotiamine. Int J Clin Pharmacol Ther 34:47–50

    PubMed  CAS  Google Scholar 

  23. Brownlee M (1994) Glycation and diabetic complications. Diabetes 43:836–841

    PubMed  CAS  Google Scholar 

  24. Schenk G, Duggleby RG, Nixon PF (1998) Properties and functions of the thiamine diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol 30:1297–1318

    PubMed  CAS  Google Scholar 

  25. Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ (2003) Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 52:2110–2120

    PubMed  CAS  Google Scholar 

  26. Thornalley PJ, Jahan I, Ng R (2001) Suppression of the accumulation of triosephosphates and increased formation of methylglyoxal in human red blood cells during hyperglycaemia by thiamine in vitro. J Biochem 129:543–549

    PubMed  CAS  Google Scholar 

  27. Hammes HP, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, Lin J, Bierhaus A, Nawroth P, Hannak D, Neumaier M, Bergfeld R, Giardino I, Brownlee M (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9:294–299

    PubMed  CAS  Google Scholar 

  28. Nixon PF, Price J, Norman-Hick M, Williams GM, Kerr RA (1990) The relationship between erythrocyte transketolase activity and the “TPP effect” in Wernicke’s encephalopathy and other thiamine deficiency states. Clin Chim Acta 192:89–98

    PubMed  CAS  Google Scholar 

  29. Horwitt MK, Kreisler O (1949) The determination of early thiamine deficient states by estimation of blood lactate and pyruvate after glucose administration and exercise. J Nutr 37:411–427

    PubMed  CAS  Google Scholar 

  30. Butterworth RF, Kril JJ, Harper CG (1993) Thiamine-dependent enzyme changes in the brains of alcoholics: relationship to the Wernicke–Korsakoff syndrome. Alcohol Clin Exp Res 17:1084–1088

    PubMed  CAS  Google Scholar 

  31. DCCT: The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    Google Scholar 

  32. UK Prospective Diabetes Study Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853

    Google Scholar 

  33. Kaiser N, Sasson S, Feener EP, Boukobza-Vardi N, Higashi S, Moller DE, Davidheiser S, Przybylski RJ, King GL (1993) Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 42:80–89

    PubMed  CAS  Google Scholar 

  34. Heilig CW, Concepcion LA, Riser BL, Freytag SO, Zhu M, Cortes P (1995) Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest 96:1802–1814

    PubMed  CAS  Google Scholar 

  35. Giardino I, Edelstein D, Brownlee M (1996) Bcl-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation end products in bovine endothelial cells. J Clin Invest 97:1422–1428

    PubMed  CAS  Google Scholar 

  36. Nishikawa T, Edelstein D, Brownlee M (2000) The missing link: a single unifying mechanism for diabetic complications. Kidney Int 58:S26–S30

    Google Scholar 

  37. Brignardello E, Beltramo E, Molinatti PA, Aragno M, Gatto V, Tamagno E, Danni O, Porta M, Boccuzzi G (1998) Dehydroepiandrosterone protects bovine retinal capillary pericytes against glucose toxicity. J Endocrinol 158:21–26

    PubMed  CAS  Google Scholar 

  38. Podestà F, Romeo G, Liu WH, Krajewski S, Reed JC, Gerhardinger C, Lorenzi M (2000) Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro. Am J Pathol 156:1025–1032

    PubMed  Google Scholar 

  39. Beltramo E, Berrone E, Buttiglieri S, Porta M (2004) Thiamine and benfotiamine prevent increased apoptosis in endothelial cells and pericytes cultured in high glucose. Diabetes Metab Res Rev 20:330–336

    PubMed  CAS  Google Scholar 

  40. Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B, Anversa P, Kaistura J (2001) Hyperglycemia activates p53 and p53-regulated denes leading to myocyte cell death. Diabetes 50:2363–2375

    PubMed  CAS  Google Scholar 

  41. Kang BP, Frencher S, Reddy V, Kessler A, Malhotra A, Meggs LG (2003) High glucose promotes mesangial cell apoptosis by oxidant-dependent mechanism. Am J Physiol Renal Physiol 284:F455–F466

    PubMed  CAS  Google Scholar 

  42. Vincent AM, McLean LL, Backus C, Feldman EL (2005) Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J 19:638–640

    PubMed  CAS  Google Scholar 

  43. Khera T, Martin J, Riley S, Steadman R, Phillips AO (2006) Glucose enhances mesangial cell apoptosis. Lab Invest 86:566–577

    PubMed  CAS  Google Scholar 

  44. Sustzak K, Raff AC, Schiffer M, Böttinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55:225–231

    Google Scholar 

  45. Romeo G, Liu WH, Asnaghi V, Kern TS, Lorenzi M (2002) Activation of nuclear factor-kappa B induced by diabetes and high glucose regulates a pro-apoptotic program in retinal pericytes. Diabetes 51:2604–2611

    Google Scholar 

  46. Li W, Liu X, Yanoff M, Cohen S, Ye X (1996) Cultured retinal capillary pericytes die by apoptosis after an abrupt fluctuation from high to low glucose levels: a comparative study with retinal capillary endothelial cells. Diabetologia 39:537–547

    PubMed  CAS  Google Scholar 

  47. Li W, Liu X, He Z, Yanoff M, Jian B, Ye X (1998) Expression of apoptosis regulatory genes by retinal pericytes after rapid glucose reduction. IOVS 39:1535–1543

    CAS  Google Scholar 

  48. Ihnat MA, Thorpe JE, Kamat CD, Szabó C, Green DE, Warnke LA, Lacza Z, Cselenyák A, Ross K, Shakir S, Piconi L, Kaltreider RC, Ceriello A (2007) Reactive oxygen species mediate a cellular “memory” of high glucose stress signalling. Diabetologia 50:1523–1531

    PubMed  CAS  Google Scholar 

  49. Cagliero E, Maiello M, Boeri D, Roy S, Lorenzi M (1988) Increased expression of basement membrane components in human endothelial cells cultured in high glucose. J Clin Invest 82:735–738

    PubMed  CAS  Google Scholar 

  50. Roy S, Sala R, Cagliero E, Lorenzi M (1990) Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc Natl Acad Sci USA 87:404–408

    PubMed  CAS  Google Scholar 

  51. Risso A, Mercuri F, Quagliaro L, Damante G, Ceriello A (2001) Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab 281:E924–E930

    PubMed  CAS  Google Scholar 

  52. Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A (2003) Intermittent high glucose enhances apoptosis relate to oxidative stress in human umbilical vein endothelial cells. Diabetes 52:2795–2804

    PubMed  CAS  Google Scholar 

  53. Piconi L, Quagliaro L, Assaloni R, Da Ros R, Maier A, Zuodar G, Ceriello A (2006) Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diab Met Res Rev 22:198–203

    CAS  Google Scholar 

  54. Kowluru RA, Abbas SN, Odenbach S (2004) Reversal of hyperglycemia and diabetic nephropathy: effect of reinstitution of good metabolic control on oxidative stress in the kidney of diabetic rats. J Diabet Complications 18:282–288

    Google Scholar 

  55. Bonora E, Muggeo M (2001) Postprandial blood glucose as a risk factor for cardiovascular disease in type II diabetes: the epidemiological evidence. Diabetologia 44:2107–2114

    PubMed  CAS  Google Scholar 

  56. Shichiri M, Kishikawa H, Ohkubo Y, Wake N (2000) Long-term results of the Kumamoto study on optimal diabetes control in type 2 diabetic patients. Diabetes Care 23(suppl.2):B21–B29

    PubMed  Google Scholar 

  57. Van Ballegooie E, Hooymans JM, Timmerman Z, Reitsma WD, Sluiter WJ, Schweitzer NM, Doorenbos H (1984) Rapid deterioration of diabetic retinopathy during treatment with continuous subcutaneous insulin infusion. Diabetes Care 7:236–242

    PubMed  Google Scholar 

  58. Dandona P, Bolger JP, Boag F, Fonesca V, Abrams JD (1985) Rapid development and progression of proliferative retinopathy after strict diabetic control. BMJ 290:885–896

    Google Scholar 

  59. Dahl-Jorgensen K, Brinchmann-Hansen O, Hanssen KF, Sandvik L, Aagenages O (1985) Rapid tightening of blood glucose levels leads to transient deterioration of retinopathy in insulin dependent diabetes mellitus. BMJ 290:811–815

    PubMed  CAS  Google Scholar 

  60. Engerman RL, Kern TS (1987) Progression of incipient diabetic retinopathy during good glycaemic control. Diabetes 36:808–812

    PubMed  CAS  Google Scholar 

  61. Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, Van Den Enden M, Kilo C, Tilton RG (1993) Hyperglycemic pseudoypoxia and diabetic complications. Diabetes 42:801–813

    PubMed  CAS  Google Scholar 

  62. Lee AY, Chung SS (1999) Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 13:23–30

    PubMed  CAS  Google Scholar 

  63. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    PubMed  CAS  Google Scholar 

  64. Engerman RL, Kern TS, Larson ME (1994) Nerve conduction and aldose reductase inhibition during 5 years of diabetes or galactosaemia in dogs. Diabetologia 37:141–144

    PubMed  CAS  Google Scholar 

  65. Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412

    PubMed  CAS  Google Scholar 

  66. Giardino I, Edelstein D, Brownlee M (1994) Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest 94:110–117

    PubMed  CAS  Google Scholar 

  67. Charonis AS, Reger LA, Dege JE, Kouzi-Koliakos K, Furcht LT, Wohlhueter RM, Tsilibary EC (1990) Laminin alterations after in vitro nonenzymatic glycosylation. Diabetes 39:807–814

    PubMed  CAS  Google Scholar 

  68. Beltramo E, Pomero F, Allione A, D’Alù F, Ponte E, Porta M (2002) Pericyte adhesion is impaired on extracellular matrix produced by endothelial cells in high hexose concentrations. Diabetologia 45:416–419

    PubMed  CAS  Google Scholar 

  69. Beltramo E, Buttiglieri S, Pomero F, Allione A, D’Alù F, Ponte E, Porta M (2003) A study of capillary pericyte viability on extracellular matrix produced by endothelial cells in high glucose. Diabetologia 46:409–415

    PubMed  CAS  Google Scholar 

  70. Doi T, Vlassara H, Kirstein M, Yamada Y, Striker GE, Striker LJ (1992) Receptor-specific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via platelet-derived growth factor. Proc Natl Acad Sci USA 89:2873–2877

    PubMed  CAS  Google Scholar 

  71. Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D (1995) Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 96:1395–1403

    PubMed  CAS  Google Scholar 

  72. Skolnik EY, Yang Z, Makita Z, Radoff S, Kirstein M, Vlassara H (1991) Human and rat mesangial cell receptors for glucose-modified proteins: potential role in kidney tissue remodelling and diabetic nephropathy. J Exp Med 174:931–939

    PubMed  CAS  Google Scholar 

  73. Hammes HP, Martin S, Federlin K, Geisen K, Brownlee M (1991) Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci USA 88:11555–11558

    PubMed  CAS  Google Scholar 

  74. Koya D, King GL (1998) Protein kinase C activation and the development of diabetic complications. Diabetes 47:859–866

    PubMed  CAS  Google Scholar 

  75. Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL (1997) Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest 100:115–126

    PubMed  CAS  Google Scholar 

  76. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    PubMed  CAS  Google Scholar 

  77. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, Bursell SE, Kern TS, Ballas LM, Heath WF, Stramm LE, Feener EP, King GL (1996) Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 272:728–731

    PubMed  CAS  Google Scholar 

  78. Koya D, Haneda M, Nakagawa H, Isshiki K, Sato H, Maeda S, Sugimoto T, Yasuda H, Kashiwagi A, Ways DK, King GL, Kikkawa R (2000) Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J 14:439–447

    PubMed  CAS  Google Scholar 

  79. Schleicher ED, Weigert C (2000) Role of the hexosamine biosyntetic pathway in diabetic nephropaty. Kidney Int 77:S13–S18

    CAS  Google Scholar 

  80. Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 97:12222–12226

    PubMed  CAS  Google Scholar 

  81. DeRubertis FR, Craven PA, Melhem MF, Salah EM (2004) Attenuation of renal injury in db/db mice overexpressing superoxide dismutase: evidence for reduced superoxide-nitric oxide interaction. Diabetes 53:762–768

    PubMed  CAS  Google Scholar 

  82. Du X, Matsumura T, Edelstein D, Rossetti L, Zsengellér Z, Szabó C, Brownlee M (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 108:341–1057

    Google Scholar 

  83. La Selva M, Beltramo E, Pagnozzi F, Bena E, Molinatti PA, Molinatti GM, Porta M (1996) Thiamine corrects delayed replication and decreases production of lactate and advanced glycation end-products in bovine retinal and umbilical vein endothelial cells cultured under high glucose conditions. Diabetologia 39:1263–1268

    PubMed  CAS  Google Scholar 

  84. Booth AA, Khalifah RG, Hudson BG (1996) Thiamine pyrophosphate and pyridoxamine inhibit the formation of antigenic advanced glycation end-products: comparison with aminoguanidine. Biochem Biophis Res Commun 220:113–119

    CAS  Google Scholar 

  85. Thornalley PJ, Jahan I, Ng R (2001) Suppression of the accumulation of triosephosphates and increased formation of methylglyoxal in human red blood cells during hyperglycaemia by thiamine in vitro. Jpn J Biochem 129:543–549

    CAS  Google Scholar 

  86. Pomero F, Molinar Min A, La Selva M, Allione A, Molinatti GM, Porta M (2001) Benfotiamine is similar to thiamine in correcting endothelial cell defects induced by high glucose. Acta Diabetol 38:135–138

    PubMed  CAS  Google Scholar 

  87. Bakker SJ, Heine RJ, Gans RO (1997) Thiamine may indirectly act as an antioxidant. Diabetologia 40:741–742

    PubMed  CAS  Google Scholar 

  88. Hsu GM, Chow BF (1960) Effect of thiamine deficiency on glutathione contents of erythrocytes and tissues in the rat. Proc Soc Exp Biol Med 104:178–180

    PubMed  CAS  Google Scholar 

  89. Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44:129–146

    PubMed  CAS  Google Scholar 

  90. Berrone E, Beltramo E, Solimine C, Ape AU, Porta M (2006) Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. J Biol Chem 281:9307–9313

    PubMed  CAS  Google Scholar 

  91. Ascher E, Gade PV, Hingorani A, Puthukkeril S, Kallakuri S, Scheinman M, Jacob T (2001) Thiamine reverses hyperglycemia-induced dysfunctions in cultured endothelial cells. Surgery 130:851–858

    PubMed  CAS  Google Scholar 

  92. Gadau S, Emanueli C, Van Linthout S, Graiani G, Todaro M, Meloni M, Campesi I, Invernici G, Spillmann F, Ward K, Madeddu P (2006) Benfotiamine accelerates the healing of ischaemic diabetic limbs in mice through protein kinase B/Akt-mediated potentiation of angiogenesis and inhibition of apoptosis. Diabetologia 49:405–420

    PubMed  CAS  Google Scholar 

  93. Marchetti V, Menghini R, Rizza S, Vivanti A, Feccia T, Lauro D, Fukamizu A, Lauro R, Federici M (2006) Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling. Diabetes 55:2231–2237

    PubMed  CAS  Google Scholar 

  94. Stracke H, Hammes HP, Werkmann D, Mavrakis K, Bitsch I, Netzel M, Geyer J, Köpcke W, Sauerland C, Bretzel RG, Federlin KF (2001) Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats. Exp Clin Endocrinol Diabetes 109:330–336

    PubMed  CAS  Google Scholar 

  95. Ceylan-Isik AF, Wu S, Li Q, Li SY, Ren J (2006) High-dose benfotiamine rescues cardiomyocyte contractile dysfunction in streptozotocin-induced diabetes mellitus. J Appl Physiol 100:150–156

    PubMed  CAS  Google Scholar 

  96. Babaei-Jadidi R, Karachalias N, Kupich C, Ahmed N, Thornalley PJ (2004) High-dose thiamine therapy counters dyslipidaemia in streptozotocin-induced diabetic rats. Diabetologia 47:2235–2246

    PubMed  CAS  Google Scholar 

  97. Hilbig R, Rahmann H (1998) Comparative autoradiographic investigations on the tissue distribution of benfotiamine versus thiamine in mice. Arzneimittelforschung 48:461–468

    PubMed  CAS  Google Scholar 

  98. Yenilmez A, Ozçifçi M, Aydin Y, Turgut M, Uzuner K, Erkul A (2006) Protective effect of high-dose thiamine (B1) on rat detrusor contractility in streptozotocin-induced diabetes mellitus. Acta Diabetol 43:103–108

    PubMed  CAS  Google Scholar 

  99. Frank T, Bitsch R, Maiwald J, Stein G (2000) High thiamine diphosphate concentrations in erythrocytes can be achieved in dialysis patients by oral administration of benfotiamine. Eur J Clin Pharmacol 56:251–257

    PubMed  CAS  Google Scholar 

  100. Woelk H, Lehrl S, Bitsch R, Kopcke W (1998) Benfotiamine in treatment of alcoholic polyneuropathy: an 8-week randomized controlled study (BAPI Study). Alcohol Alcohol 33:631–638

    PubMed  CAS  Google Scholar 

  101. Stracke H, Lindemann A, Federlin K (1996) A benfotiamine-vitamin B combination in treatment of diabetic polyneuropathy. Exp Clin Endocrinol Diabetes 104:311–316

    Article  PubMed  CAS  Google Scholar 

  102. Haupt E, Ledermann H, Kopcke W (2005) Benfotiamine in the treatment of diabetic polyneuropathy—a three-week randomized, controlled pilot study (BEDIP study). Int J Clin Pharmacol Ther 43:71–77

    PubMed  CAS  Google Scholar 

  103. Saito N, Kimura M, Kuchiba A, Itokawa Y (1987) Blood thiamine levels in outpatients with diabetes mellitus. J Nutr Sci Vitaminol 33:421–430

    PubMed  CAS  Google Scholar 

  104. Valerio G, Franzese A, Poggi V, Patrini C, Laforenza U, Tenore A (1999) Lipophilic thiamine treatment in long-standing insulin-dependent diabetes mellitus. Acta Diabetol 36:73–76

    PubMed  CAS  Google Scholar 

  105. Jermendy G (2006) Evaluating thiamine deficiency in patients with diabetes. Diab Vasc Dis Res 3:120–121

    PubMed  Google Scholar 

  106. Thornalley PJ, Babaei-Jadidi R, Al Ali H, Rabbani N, Antonysunil A, Larkin J, Ahmed A, Rayman G, Bodmer CW (2007) High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease. Diabetologia 50:2164–2170

    PubMed  CAS  Google Scholar 

  107. Stepuro II, Piletskaya TP, Stepuro VI, Maskevich SA (1997) Thiamine oxidative transformations catalyzed by copper ions and ascorbic acid. Biochemistry 62:1409–1414

    PubMed  CAS  Google Scholar 

  108. Stirban A, Negrean M, Stratmann B, Gawlowski T, Horstmann T, Götting C, Kleesiek K, Mueller-Roesel M, Koschinsky T, Uribarri J, Vlassara H, Tschoepe D (2006) Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care 29:2064–2071

    PubMed  CAS  Google Scholar 

  109. Arora S, Lidor A, Abularrage CJ, Weiswasser JM, Nylen E, Kellicut D, Sidawy AN (2006) Thiamine (vitamin B1) improves endothelium-dependent vasodilatation in the presence of hyperglycemia. Ann Vasc Surg 20:653–658

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Beltramo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltramo, E., Berrone, E., Tarallo, S. et al. Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications. Acta Diabetol 45, 131–141 (2008). https://doi.org/10.1007/s00592-008-0042-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-008-0042-y

Keywords

Navigation