Skip to main content
Log in

The vertebral endplate: disc degeneration, disc regeneration

  • Review
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The vertebral endplates are critical for maintaining disc function yet like other components of the disc are vulnerable to degeneration. This paper provides an overview of the development and normal function of the endplates as well as an impression of what happens when they undergo progressive degeneration. Recent research suggests that the degenerative process can be retarded or reversed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner T, Gresk-Otter KR, Fairbank JC et al (1998) Variation with age in the pattern of type X collagen expression in normal and scoliotic human intervertebral discs. CalcifTissue Int 63:263–268

    Google Scholar 

  2. Anderson DG, Risbud MV, Shapiro IM, Vaccaro AR, Albert TJ (2005) Cell-based therapy for disc repair. Spine J 5:297S–303S

    Article  PubMed  Google Scholar 

  3. Antoniou J, Arlet V, Goswami T et al (2001) Elevated synthetic activity in the convex side of scoliotic intervertebral discs and endplates compared with normal tissues. Spine 26:198–206

    Article  Google Scholar 

  4. Antoniou J, Goudsouzian M, Heathfield TF et al (1996) The human lumbar endplate. Evidence of changes in biosynthesis and denaturation of the extracellular matrix with growth, maturation, aging, and degeneration. Spine 21:1153–1161

    Article  PubMed  CAS  Google Scholar 

  5. Ariga K, Miyamoto S, Nakase T et al (2001) The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc. Spine 26:2414–2420

    Article  PubMed  CAS  Google Scholar 

  6. Bayliss MT, Johnstone B (1992) Biochemistry of the intervertebral disc. In: Jayson MIV (ed) The lumbar spine and back pain, 4th edn. Edinburgh, Churchill Livingstone, pp 111–131

    Google Scholar 

  7. Beggs I, Addison J (1998) Posterior vertebral rim fractures. Br J Radiol 71:567–572

    PubMed  CAS  Google Scholar 

  8. Bernick S, Caillet R (1982) Vertebral end-plate changes with aging of human vertebrae. Spine 7:97–102

    Article  PubMed  CAS  Google Scholar 

  9. Brisby H, Tao H, Ma DDF, Diwan AD (2004) Cell therapy for disc degeneration—potentials and pitfalls. Orthop Clin North Am 35:1–9

    Article  Google Scholar 

  10. Broberg KB (1983) On the mechanical behaviour of intervertebral discs. Spine 8:151–165

    Article  PubMed  CAS  Google Scholar 

  11. Brown MF, Hukkanen MVJ, McCarthy ID, Redfern DRM, Batten JJ, Crock HV, Hughes SPF, Polak JM (1997) Sensory and sympathetic innervation of the vertebral endplate in patients with degenerative disc disease. J Bone Joint Surg 79:147–153

    Article  CAS  Google Scholar 

  12. Chandraraj S, Briggs CA, Opeskin K (1998) Disc herniation in the young and end-plate vascularity. Clin Anat 11:171–176

    Article  PubMed  CAS  Google Scholar 

  13. Crean JK, Roberts S, Jaffray DC et al (1997) Matrix metalloproteinases in the human intervertebral disc: role in disc degeneration and scoliosis. Spine 22:2877–2884

    Article  PubMed  CAS  Google Scholar 

  14. Crock HV, Goldwasser M (1984) Anatomic studies of the circulation in the region of the vertebral endplate in adult greyhound dogs. Spine 9:702–706

    Article  PubMed  CAS  Google Scholar 

  15. Crock HV, Yoshizawa H (1976) The blood supply of the lumbar vertebral column. Clin Orthop Rel Res 115:6–21

    Google Scholar 

  16. Edwards WT, Zheng Y, Ferrara LA, Yuan HA (2001) Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine 26:218–225

    Article  PubMed  CAS  Google Scholar 

  17. Fagan AB, Moore RJ, Vernon-Roberts B et al (2003) The innervation of the intervertebral disc: a quantitative analysis. Spine 28:2570–2576

    Article  PubMed  Google Scholar 

  18. Goupille P, Jayson MI, Valat JP, Freemont AJ (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration?. Spine 23:612–626

    Article  Google Scholar 

  19. Hilton RC, Ball J, Benn RT (1976) Vertebral end-plate lesions (Schmorl’s nodes) in the dorso-lumbar spine. Ann Rheum Dis 35:127–132

    Article  PubMed  CAS  Google Scholar 

  20. Holm S, Maroudas A, Urban JPG et al (1981) Nutrition of the intervertebral disc. Solute transport and metabolism. Connect Tiss Res 8:101–119

    Article  CAS  Google Scholar 

  21. Hukins DWL (1988) Disc structure and function. In: Ghosh P (ed) The biology of the intervertebral disc. CRC Press, Boca Raton, pp 1–37

    Google Scholar 

  22. Inoue H (1981) Three-dimensional architecture of lumbar intervertebral discs. Spine 6:139–146

    Article  PubMed  CAS  Google Scholar 

  23. Kang JD, Stefanovic-Racic M, McIntyre LA et al (1997) Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2 and matrix metalloproteinases. Spine 22:1065–1073

    Article  PubMed  CAS  Google Scholar 

  24. Levicoff EA, Gilbertson LG, Kang JD (2005) Gene therapy for disc repair. Spine J 5:287S–296S

    Article  PubMed  Google Scholar 

  25. Lundin O, Ekstrom L, Hellstrom M et al (1998) Injuries in the adolescent porcine spine exposed to mechanical compression. Spine 23:2574–2579

    Article  PubMed  CAS  Google Scholar 

  26. Lundin O, Ekstrom L, Hellstrom M et al (2000) Exposure of the porcine spine to mechanical compression: differences in injury pattern between adolescents and adults. Eur Spine J 9:466–471

    Article  PubMed  CAS  Google Scholar 

  27. McFadden KD, Taylor JR (1989) End-plate lesions of the lumbar spine. Spine 14:867–469

    Article  PubMed  CAS  Google Scholar 

  28. Maroudas A, Stockwell RA, Nachemson A, Urban J (1975) Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat 120:113–130

    PubMed  CAS  Google Scholar 

  29. Masuda K, An HS (2004) Growth factors and the intervertebral disc. Spine J 4:330S–340S

    Article  PubMed  Google Scholar 

  30. Moore RJ, Osti OL, Vernon-Roberts B, Fraser RD (1992) Changes in endplate vascularity after an outer anulus tear in the sheep. Spine 17:874–878

    Article  PubMed  CAS  Google Scholar 

  31. Moore RJ, Vernon-Roberts B, Fraser RD et al (1996) The origin and fate of herniated lumbar intervertebral disc tissue. Spine 21:2149–2155

    Article  PubMed  CAS  Google Scholar 

  32. Nachemson A, Lewin T, Maroudas A, Freeman MAR (1970) In vitro diffusion of dye through the endplate and the annulus fibrosus of human intervertebral discs. Acta Orthop Scand 41:589–607

    Article  PubMed  CAS  Google Scholar 

  33. Natarajan RN, Ke JH, Andersson GB (1994) A model to study the disc degeneration process. Spine 19:259–265

    Article  PubMed  CAS  Google Scholar 

  34. Oda J, Tanaka H, Tsuzuki N (1988) Intervertebral disc changes with aging of human cervical vertebra from the neonate to the eighties. Spine 13:1205–1211

    Article  PubMed  CAS  Google Scholar 

  35. Ogata K, Whiteside LA (1981) Nutritional pathways in the intervertebral disc. An experimental study using hydrogen washout technique. Spine 6:211–216

    Article  PubMed  CAS  Google Scholar 

  36. Oki S, Matsuda Y, Shibata T et al (1996) Morphologic differences of the vascular buds in the vertebral endplate—scanning electron microscopic study. Spine 21:174–177

    Article  PubMed  CAS  Google Scholar 

  37. Pearce RH, Grimmer BJ, Adams ME (1987) Degeneration and the chemical composition of the human intervertebral disc. J Orthop Res 5:198–205

    Article  PubMed  CAS  Google Scholar 

  38. Pedrini-Mille A, Pedrini VA, Tudisio C et al (1983) Proteoglycans of human scoliotic intervertebral disc. J Bone Joint Surg 65A:815–823

    Google Scholar 

  39. Pfirrmann CWA, Resnick D (2001) Schmorl nodes of the thoracic and lumbar spine: radiographic–pathologic study of prevalence, characterization, and correlation with degenerative changes of 1,650 spinal levels in 100 cadavers. Radiol 219:368–374

    CAS  Google Scholar 

  40. Pooni JS, Hukins DW, Harris PF, Hilton RC, Davies KE (1986) Comparison of the structure of human intervertebral discs in the cervical, thoracic and lumbar regions of the spine. Surg Radiol Anat 8:175–182

    Article  PubMed  CAS  Google Scholar 

  41. Roberts S, Caterson B, Menage J et al (2000) Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine 25:3005–3013

    Article  PubMed  CAS  Google Scholar 

  42. Roberts S, McCall IW, Menage J et al (1997) Does the thickness of the vertebral subchondral bone reflect the composition of the intervertebral disc?. Eur Spine J 6:385–389

    Article  PubMed  CAS  Google Scholar 

  43. Roberts S, Menage J, Eisenstein SM (1993) The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J Orthop Res 11:747–757

    Article  PubMed  CAS  Google Scholar 

  44. Roberts S, Menage J, Urban JP (1989) Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 14:166–174

    Article  PubMed  CAS  Google Scholar 

  45. Roberts S, Urban JP, Evans H, Eisenstein SM (1996) Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21:415–420

    Article  PubMed  CAS  Google Scholar 

  46. Rolander SD, Blair WE (1975) Deformation and fracture of the lumbar vertebral endplates. Orthop Clin North Am 6:75–81

    PubMed  CAS  Google Scholar 

  47. Sahlman J, Inkinen R, Hirvonen T et al (2001) Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for type II collagen. Spine 26:2558–2565

    Article  PubMed  CAS  Google Scholar 

  48. Schmorl G, Junghanns H (1971) The human spine in health and disease, 2nd edn. Grune and Stratton, New York

  49. Tanaka M, Nakahara S, Inoue H (1993) A pathologic study of discs in the elderly. Separation between the cartilaginous endplate and the vertebral body. Spine 18:1456–1462

    Article  PubMed  CAS  Google Scholar 

  50. Taylor JR, Twomey LT (1988) Growth of human intervertebral discs and vertebral bodies. J Anat 120:49–68

    Google Scholar 

  51. Urban JPG, Holm S, Maroudas A (1978) Diffusion of small solutes into the intervertebral disc. An in vivo study. Biorheology 15:203–221

    PubMed  CAS  Google Scholar 

  52. Urban JPG, Holm S, Maroudas A, Nachemson A (1977) Nutrition of the intervertebral disc. An in vivo study of solute transport. Clin Orthop Rel Res 129:101–114

    CAS  Google Scholar 

  53. Vernon-Roberts B (1992) Age-related and degenerative pathology of intervertebral discs and apophyseal joints. In: Jayson MIV (ed) The lumbar spine and back pain, 4th edn. Edinburgh, Churchill Livingstone, pp 17–41

    Google Scholar 

  54. Vernon-Roberts B, Pirie CJ (1977) Degenerative changes in the intervertebral discs and their sequelae. Rheum Rehab 16:13–21

    Article  CAS  Google Scholar 

  55. Wallace AL, Wyatt BC, McCarthy ID, Hughes SPF (1994) Humoral regulation of blood flow in the vertebral endplate. Spine 19:1324–1328

    Article  PubMed  CAS  Google Scholar 

  56. Wallach CJ, Gilbertson LG, Kang JD (2003) Gene therapy applications for intervertebral disc degeneration. Spine 28:S93–S98

    Article  PubMed  Google Scholar 

  57. Weiler C, Nerlich AG, Zipperer J et al (2002) SSE Award Competition in Basic Sciences: expression of major matrix metalloproteinases is associated with intervertebral disc degeneration and resorption. Eur Spine J 11:308–320

    Article  PubMed  CAS  Google Scholar 

  58. Yoon TS (2005) Molecular therapy of the intervertebral disc. Spine J 5:280S–286S

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, R.J. The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J 15 (Suppl 3), 333–337 (2006). https://doi.org/10.1007/s00586-006-0170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-006-0170-4

Keywords

Navigation