Skip to main content

Advertisement

Log in

Ostryopsis davidiana seedlings inoculated with ectomycorrhizal fungi facilitate formation of mycorrhizae on Pinus tabulaeformis seedlings

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Reforestation in China is important for reversing anthropogenic activities that degrade the environment. Pinus tabulaeformis is desired for these activities, but survival and growth of seedlings can be hampered by lack of ectomycorrhizae. When outplanted in association with Ostryopsis davidiana plants on reforestation sites, P. tabulaeformis seedlings become mycorrhizal and survival and growth are enhanced; without O. davidiana, pines often remain without mycorrhizae and performance is poorer. To better understand this relationship, we initiated an experiment using rhizoboxes that restricted root and tested the hypothesis that O. davidiana seedlings facilitated ectomycorrhizae formation on P. tabulaeformis seedlings through hyphal contact. We found that without O. davidiana seedlings, inocula of five indigenous ectomycorrhizal fungi were unable to grow and associate with P. tabulaeformis seedlings. Inocula placed alongside O. davidiana seedlings, however, resulted in enhanced growth and nutritional status of O. davidiana and P. tabulaeformis seedlings, and also altered rhizosphere pH and phosphatase activity. We speculate that these species form a common mycorrhizal network and this association enhances outplanting performance of P. tabulaeformis seedlings used for forest restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bai SL, Bai YE, Fang L, Liu Y (2004) Mycorrhiza of Cenococcum geophilum formed on Ostryopsis davidiana and mycorrhizal affection on the growth of Ostryopsis davidiana. Scientia Silvae Sinicae 40:194–196, in Chinese

    Google Scholar 

  • Bai SL, Liu Y, Zhou J, Dong Z, Fan R (2006) Resources investigation and ecological study on ectomycorrhizal fungi in Daqingshan Mountains, Inner Mongolia. Acta Ecol Sin 26:837–841, in Chinese

    CAS  Google Scholar 

  • Boyle CD, Hellenbrand KE (1990) Assessment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings. Can J Bot 69:1764–1771. doi:10.1139/b91-224

    Article  Google Scholar 

  • Brownlee C, Duddridge JA, Malibari A, Read DJ (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71:433–443. doi:10.1007/BF02182684

    Article  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Canberra: ACIAR Monograph. pp 120–290

  • Burdett AN (1990) Physiological processes in plantation establishment and the development of specifications for forest planting stock. Can J Res 20:415–427. doi:10.1139/x90-059

    Article  Google Scholar 

  • Cui XY (1998) Modern experimental analysis technology for forestry soil. Northeast Forestry University Press, Harbin, pp 73–99

    Google Scholar 

  • Cullings KW, Vogler DR, Parker VT, Finley SK (2000) Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea engelmannii forest in Yellowstone National Park. Appl Environ Microb 66:4988–4991. doi:0099-2240/00/$04.0010

    Article  CAS  Google Scholar 

  • Dickie IA, Oleksyn J, Reich PB, Karolewski P, Zytkowiak R, Jagodzinski AM, Turzanska E (2006) Soil modification by different tree species influences the extent of seedling ectomycorrhizal infection. Mycorrhiza 16:73–79. doi:10.1007/s00572-005-0013-x

    Article  CAS  PubMed  Google Scholar 

  • Faber BA, Zasoski RJ, Munns DN, Shackel K (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69:87–94

    Article  Google Scholar 

  • Fries N, Bardet M, Serck-Hanssen K (1985) Growth of ectomycorrhizal fungi stimulated by lipids from a pine root exudate. Plant Soil 86:287–290. doi:10.1007/BF02182906

    Article  CAS  Google Scholar 

  • Fu L, Nan L, Mill RR (1999) Pinaceae, vol 4. In: Wu Z-Y, Raven PH et al (eds) Flora of China. Missouri Botanical Garden Press, St. Louis, pp 11–52

    Google Scholar 

  • Gerlitz TGB, Werk WB (1994) Investigations on phosphate uptake and polyphosphate metabolism by mycorrhized and non-mycorrhized roots of beech and pine as investigated by in vivo 31P-NMR. Mycorrhiza 4:207–214. doi:10.1007/BF00206782

    Article  CAS  Google Scholar 

  • Gong MQ, Chen YL, Zhong CL (1997) Mycorrhizal research and application. China Forestry Press, Beijing, pp 17–32

    Google Scholar 

  • Grossnickle SC (2005) Importance of root growth in overcoming planting stress. New For 30:273–294. doi:10.1007/s11056-004-8303-2

    Article  Google Scholar 

  • Guan SY (1986) Soil enzyme and its research method. Beijing Agric Press, Beijing, pp 1–376

    Google Scholar 

  • Han XL, Fang L, Zhou J, Bai SL (2005) The search, synthesizing, and screening out of outstanding Ostryopsis davidiana ectomycorrhiza. Acta Agric Boreali-Sinica 20:101–104, in Chinese

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, Cambridge, pp 1–99

    Google Scholar 

  • He X-H, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567. doi:10.1080/07352680390253520

    Article  Google Scholar 

  • He X-H, Bledsoe CS, Zasoski RJ, Southworth D, Horwath WR (2006) Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol 170:143–151. doi:10.1111/j.1469-8137.2006.01648.x

    Article  CAS  PubMed  Google Scholar 

  • Hua XM (1995) Introduction to mycorrhiza. In: Hua M (ed) Studies on mycorrhiza of forest trees. Chinese Sci Tech Press, Beijing, pp 1–20

    Google Scholar 

  • Hubert NA, Gehring CA (2008) Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone. Mycorrhiza 18:363–374. doi:10.1007/s00572-008-0185-2

    Article  PubMed  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91. doi:10.1007/s00572-006-0094-1

    Article  PubMed  Google Scholar 

  • Kennedy PG, Izzo AD, Bruns TD (2003) There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J Ecol 91:1071–1080. doi:10.1046/j.1365-2745.2003.00829.x

    Article  Google Scholar 

  • Landis TD, Tinus RW, McDonald SE, Barnett JP (1989) Seedling nutrition and irrigation. The Container Tree Nursery Manual, Volume 4. US Dept Agric, Washington DC, Agric Handbk 674

    Google Scholar 

  • Li P-C, Skvortsov AK (1999) Betulaceae, vol 4. In: Wu Z-Y, Raven PH et al (eds) Flora of China. Science Press, Beijing, pp 286–313

    Google Scholar 

  • Li W (2004) Degradation and restoration of forest ecosystems in China. For Ecol Manage 201:33–41. doi:10.1016/j.foreco.2004.06.010

    Article  Google Scholar 

  • Liu RJ, Li XL (2000) Arbuscular Mycorrhizae and application. Science Press, Beijing

    Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Mao XL (1998) Economic fungi in China (in Chinese). Science Press, Beijing

    Google Scholar 

  • Molina R, Trappe JM (1982) Patterns of ectomycorrhizal host specificity and potential among Pacific northwest conifers and fungi. For Sci 28:423–458

    Google Scholar 

  • Nambiar EKS, Sands R (1993) Competition for water and nutrients in forests. Can J Res 23:1955–1968. doi:10.1139/x93-247

    Article  Google Scholar 

  • Owusu-Bennoah E, Wild A (1980) Effects of vesicular–arbuscular mycorrhiza on the labile pool of soil phosphate. Plant Soil 54:233–242. doi:10.1007/BF02181849

    Article  CAS  Google Scholar 

  • Pfeffer PE, Bago B, Shachar-Hill Y (2001) Exploring mycorrhizal function with NMR spectroscopy. New Phytol 150:543–553. doi:10.1046/j.1469-8137.2001.00139.x

    Article  CAS  Google Scholar 

  • Plamboeck AH, Dawson TE, Egerton-Warburton LM, North M, Bruns TD, Querejeta JI (2007) Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings. Mycorrhiza 17:439–447. doi:10.1007/s00572-007-0119-4

    Article  PubMed  Google Scholar 

  • Ren XW (2002) Dendrology (northern edition). China Forest Press, Beijing, pp 63–201

    Google Scholar 

  • van den Driessche R (1987) Importance of current photosynthates to new root growth in planted conifer seedlings. Can J Res 17:776–782. doi:10.1139/x87-124

    Article  Google Scholar 

  • Vazquez MM, Cesar S, Azcon R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272. doi:10.1016/S0929-1393(00)00075-5

    Article  Google Scholar 

  • Vierheilig H, Alt-Hug M, Engel-Streitwolf R, Mäder P, Wiemken A (1998) Studies on the attractional effect of root exudates on hyphal growth of an arbuscular mycorrhizal fungus in a soil compartment-membrane system. Plant Soil 203:137–144. doi:10.1023/A:1004329919005

    Article  CAS  Google Scholar 

  • Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129:389–401. doi:10.1111/j.1469-8137.1995.tb04309.x

    Article  Google Scholar 

  • Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi. Plant Soil 218:249–256. doi:10.1023/A:1014936217105

    Article  CAS  Google Scholar 

  • Wallander H, Arnebrant K, Dahlberg A (1999) Relationships between fungal uptake of ammonium, fungal growth and nitrogen availability in ectomycorrhizal Pinus sylvestris seedlings. Mycorrhiza 8:215–223. doi:10.1007/s005720050237

    Article  CAS  Google Scholar 

  • Wang JL (1981) Studies on drought tolerance of trees in Beijing western mountain area. Beijing For 2:10–21, in Chinese

    Google Scholar 

  • Wang Y (2004) Environmental degradation and environmental threats in China. Environ Monit Assess 90:161–169. doi:10.1023/B:EMAS.0000003576.36834.c9

    Article  PubMed  Google Scholar 

  • Warren JM, Brooks R, Meinzer FC, Eberhart JL (2008) Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol 178:382–394. doi:10.1111/j.1469-8137.2008.02377.x

    Article  CAS  PubMed  Google Scholar 

  • Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006) Comparisons of structure and life span in roots and leaves among temperate trees. Ecol Monogr 76:381–397. doi:10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2

    Article  Google Scholar 

  • Wu B, Nioh I (1997) Growth and water relations of P. tabulaeformis seedlings inoculated with ectomycorrhizal fungi. Microbes Environ 12:69–74

    Article  Google Scholar 

  • Wu B, Watanabe I, Hayatsu M, Nioh I (1999) Effect of ectomycorrhizae on the growth and uptake and transport of 15N-labeled compounds by Pinus tabulaeformis seedlings under water stressed-conditions. Biol Fertil Soils 28:136–138. doi:10.1007/s003740050474

    Article  CAS  Google Scholar 

  • Wu B, Nara K, Hogetsu T (2001) Can C14-labelled photosynthetic products move between Pinus densiflora seedling linked by ectomycorrhizal mycelia? New Phytol 149:137–147. doi:10.1046/j.1469-8137.2001.00010.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Xiaolan Mao, senior researcher at the Chinese Academy of Sciences, Institute of Microorganisms, for identifying the fungal fruiting bodies, Amy Ross-Davis for additional statistical analysis, Drs. Deborah Page-Dumroese and Michael Castellano for their review of an earlier draft, and the insightful comments from two anonymous reviewers and Dr. Randy Molina. This work was supported by the National Natural Science Foundation of China (Nos. 30560122 and 30471380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Lei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, SL., Li, GL., Liu, Y. et al. Ostryopsis davidiana seedlings inoculated with ectomycorrhizal fungi facilitate formation of mycorrhizae on Pinus tabulaeformis seedlings. Mycorrhiza 19, 425–434 (2009). https://doi.org/10.1007/s00572-009-0245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-009-0245-2

Keywords

Navigation