Skip to main content
Log in

Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading?

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Research in the field of arbuscular mycorrhizal (AM) symbiosis has taken a giant leap in the past two decades, as demonstrated by the large amount of literature being published every year. Most of the research efforts have been put towards the understanding of the mechanisms of this symbiosis. However, there are still several unknowns on the systemic effects of the AM symbiosis, and our understanding of non-nutritional effects on the physiological changes occurring in the aerial parts of the host plant is yet quite limited. In this short note, I briefly address the question, if there are any changes in metabolic activities that are triggered by AM fungi, and assess the importance of such changes for mycorrhizal research and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Akiyama K, Matsuzaki K, Hyashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Allen MF, Moore TS, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular–arbuscular mycorrhizae. I. Cytokinin increases in the host plant. Can J Bot 58:371–374

    Article  CAS  Google Scholar 

  • Allen MF, Moore TS, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular–arbuscular mycorrhizae. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60:468–471

    Article  CAS  Google Scholar 

  • Benhamou N (1996) Elicitor-induced plant defence pathways. Trends Plant Sci 1:233–240

    Article  Google Scholar 

  • Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624

    Article  PubMed  Google Scholar 

  • Bonfante P, Perotto S (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:3–21

    Article  Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant–pathogen relations? Ecology 82:3057–3068

    Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Buée M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698

    Article  PubMed  Google Scholar 

  • Cánovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298

    Article  PubMed  Google Scholar 

  • Caravaca F, Alguacil MM, Hernandez JA, Roldan A (2005) Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants. Plant Sci 169:191–197

    Article  CAS  Google Scholar 

  • Collantes HG, Gianoli E, Niemeyer HM (1998) Changes in growth and chemical defences upon defoliation in maize. Phytochemistry 49:1921–1923

    Article  CAS  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    Article  CAS  PubMed  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defence responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Cui M, Nobel PS (1992) Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytol 122:643–649

    Article  CAS  Google Scholar 

  • Declerck S, Strullu DG, Fortin JA, Ed EDS (2005) In vitro culture of mycorrhizas. Soil biology. Springer, Berlin

    Book  Google Scholar 

  • Ernst E (2000) Herbal medicines: where is the evidence? Growing evidence of effectiveness is counterbalanced by inadequate regulation. Br Med J 321:395–396

    Article  CAS  Google Scholar 

  • Esch H, Hundeshagen B, Schneiderpoetsch H, Bothe H (1994) Demonstration of abscisic acid in spores and hyphae of the arbuscular mycorrhizal fungus Glomus and in the N2 fixing cyanobacterium Anabaena variabilis. Plant Sci 99:9–16

    Article  CAS  Google Scholar 

  • Fitter AH (1985) Functioning of vesicular–arbuscular mycorrhizas under field conditions. New Phytol 99:257–265

    Article  Google Scholar 

  • Fitze D, Wiepning A, Kaldorf M, Ludwig-Muller J (2005) Auxins in the development of an arbuscular mycorrhizal symbiosis in maize. J Plant Physiol 162:1210–1219

    Article  CAS  PubMed  Google Scholar 

  • Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Grandmaison J, Olah GM, Vancalsteren MR, Furlan V (1993) Characterization and localization of plant phenolics likely involved in the pathogen resistance expressed by endomycorrhizal roots. Mycorrhiza 3:155–164

    Article  CAS  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  CAS  PubMed  Google Scholar 

  • Harris D, Paul EA (1987) Carbon requirements of vesicular–arbuscular mycorrhizae. In: Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, FL, pp 93–105

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1994) Hyphal N transport by a vesicular–arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160:1–9

    Article  CAS  Google Scholar 

  • Jones CG, Last FT (1991) In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant–herbivore interactions. Wiley, New York, pp 65–103

    Google Scholar 

  • Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446

    Article  CAS  PubMed  Google Scholar 

  • Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 3:137–141

    Article  Google Scholar 

  • Larose G, Chenevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339

    Article  CAS  Google Scholar 

  • Lumpkin HM (2005) A comparison of lycopene and other phytochemicals in tomatoes grown under conventional and organic management systems. In: Kalb T (ed) Technical bulletin no. 34. AVRDC—The World Vegetable Center, Shanhua, Taiwan, p 48

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Rabin LB, Pacovsky RS (1985) Reduced larva growth of two Lepidoptera (Noctuidae) on excised leaves of soybean infected with a mycorrhizal fungus. J Econ Entomol 78:1358–1363

    Article  Google Scholar 

  • Rai M, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Scharff AM, Jakobsen I, Rosendahl L (1997) The effect of symbiotic microorganisms on phytoalexin contents of soybean roots. J Plant Physiol 151:716–723

    Article  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    CAS  PubMed  Google Scholar 

  • Singh DP, Srivastava JS, Bahadur A, Singh UP, Singh SK (2004) Arbuscular mycorrhizal fungi induced biochemical changes in pea (Pisum sativum) and their effect on powdery mildew (Erysiphe pisi). Journal of Plant Diseases and Protection 111:266–272

    Google Scholar 

  • Sirohi SS, Singh OS (1983) Relationship of endomycorrhizal association of unsterilized soils with available soil phosphorus, plant growth, phosphorus uptake and oil synthesis in peppermint. Sci Hortic 20:185–191

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian KS, Charest C, Dwyer LM, Hamilton RI (1995) Arbuscular mycorrhizas and water relations in maize under drought stress at tasselling. New Phytol 129:643–650

    Article  Google Scholar 

  • Subramanian KS, Charest C, Dwyer LM, Hamilton RI (1997) Effects of arbuscular mycorrhizae on leaf water potential, sugar content, and P content during drought and recovery of maize. Can J Bot 75:1582–1591

    Article  CAS  Google Scholar 

  • Taylor J, Harrier LA (2003) Expression studies of plant genes differentially expressed in leaf and root tissues of tomato colonised by the arbuscular mycorrhizal fungus Glomus mosseae. Plant Mol Biol 51:619–629

    Article  CAS  PubMed  Google Scholar 

  • Torelli A, Trotta A, Acerbi L, Arcidiacono G, Berta G, Branca C (2000) IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226:29–35

    Article  CAS  Google Scholar 

  • Toussaint JP, Smith F, Smith S (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza (in press). DOI 10.1007/s00572-006-0104-3

  • Toussaint JP, St-Arnaud M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol 50:251–260

    Article  CAS  PubMed  Google Scholar 

  • VanEtten HD, Mansfield JW, Bailey JA, Farmer JA (1994) Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 6:1191–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wright DP, Read DJ, Scholes JD (1998a) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21:881–891

    Article  Google Scholar 

  • Wright DP, Scholes JD, Read DJ (1998b) Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21:209–216

    Article  Google Scholar 

  • Zhu Y-G, Christie P, Laidlaw AS (2001) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42:193–199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. F.A. Smith and Prof. S.E. Smith for critically reviewing the first drafts of this communication as well as the anonymous reviewers for their critical comments and suggestions of improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Toussaint.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toussaint, JP. Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading?. Mycorrhiza 17, 349–353 (2007). https://doi.org/10.1007/s00572-007-0133-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-007-0133-6

Keywords

Navigation