Skip to main content
Log in

Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Soil phosphorus response curves of plants with and without mycorrhizas reflect two different, but complementary, phenomena. The first, plant responsiveness to mycorrhizas, is represented by the difference in growth between plants with and without mycorrhizas at any designated level of phosphorus availability. This is also a measure of mycorrhizal fungus effectiveness. The second, the lowest level of phosphorus availability at which plants can grow without mycorrhizas, is here termed dependence upon mycorrhizas. The latter definition differs from conventional usage which fails to distinguish dependence from responsiveness. Sigmoid curves generated by the three-parameter, logistic equation generally can model the responses of plants to mycorrhizas and phosphorus addition and can be used to assess responsiveness, effectiveness, and dependence. Such curves reveal that plant responsiveness or fungus effectiveness determined at a single level of phosphorus availability may be misleading when used to compare different host species’ intrinsic capacities to respond to different mycorrhizal fungus species. Instead, the same relative position should be evaluated among phosphorus response curves for different species combinations. Dependence of a plant species known to benefit from mycorrhizas can be assessed with reference to only the phosphorus response curve of plants without mycorrhizas. Dependence is a constitutive property of plant species that can be used to classify them as facultatively or obligately mycotrophic. Dependence is a plant attribute upon which natural selection can act, but responsiveness and effectiveness cannot be selected directly because they are emergent properties of the interaction between plant and fungus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott LK, Robson AD (1984) The effect of VA mycorrhizae on plant growth. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC, Boca Raton, Florida, pp 113–130

    Google Scholar 

  • Adjoud D, Plenchette C, Halli-Hargas R, Lapeyrie FF (1996) Response of 11 eucalyptus species to inoculation with three arbuscular mycorrhizal fungi. Mycorrhiza 6:129–135

    Article  Google Scholar 

  • Bagyaraj DJ (1992) Vesicular–arbuscular mycorrhiza: application in agriculture. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 24, techniques for the study of mycorrhiza. Academic, London, pp 359–373

    Google Scholar 

  • Baon JB, Smith SE, Alston AM (1993) Mycorrhizal responses of barley cultivars differing in P efficiency. Plant Soil 157:97–105

    Article  Google Scholar 

  • Barrow NJ, Malajczuk N, Shaw TC (1977) A direct test of the ability of vesicular–arbuscular mycorrhiza to help plants take up fixed soil phosphate. New Phytol 78:269–276

    Article  CAS  Google Scholar 

  • Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, pp 373–389

    Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Pacovsky RS (1982) Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: development of the host plant. Phytopathology 72:889–893

    Article  CAS  Google Scholar 

  • Bever JD, Pringle A, Schultz PA (2002) Dynamics within the plant–arbuscular mycorrhizal fungal mutualism: testing the nature of community feedback. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 267–292

    Google Scholar 

  • Boerner REJ (1992) Plant life span and response to inoculation with vesicular–arbuscular mycorrhizal fungi. I. Annual versus perennial grasses. Mycorrhiza 1:153–161

    Article  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Bolan NS, Robson AD, Barrow NJ (1983) Plant and soil factors including mycorrhizal infection causing sigmoidal response of plants to applied phosphorus. Plant Soil 73:187–201

    Article  CAS  Google Scholar 

  • Burleigh SH, Cavagnaro T, Jakobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53:1593–1601

    Article  CAS  PubMed  Google Scholar 

  • Campbell NA, Keay J (1970) Flexible techniques in describing mathematically a range of response curves of pasture species. In: Proceedings of the XI International Grassland Congress. University of Queensland Press, Brisbane, pp 332–334

    Google Scholar 

  • Cooper KM (1984) Physiology of VA mycorrhizal associations. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC, Boca Raton, Florida, pp 155–186

    Google Scholar 

  • Crush JR (1973) The effect of Rhizophagus tenuis mycorrhizas on ryegrass, cocksfoot and sweet vernal. New Phytol 72:965–973

    Article  Google Scholar 

  • Daft MJ, Nicolson TH (1969) Effect of Endogone mycorrhiza on plant growth. III. Influence of inoculum concentration on growth and infection in tomato. New Phytol 68:953–963

    Article  Google Scholar 

  • Declerck S, D’or D, Cranenbrouck S, Le Boulengé E (2001) Modelling the sporulation dynamics of arbuscular mycorrhizal fungi in monoxenic culture. Mycorrhiza 11:225–230

    Article  Google Scholar 

  • Dickson S, Smith SE, Smith FA (1999) Characterization of two arbuscular mycorrhizal fungi in symbiosis with Allium porrum: inflow and flux of phosphate across the symbiotic interface. New Phytol 144:173–181

    Article  CAS  Google Scholar 

  • Egerton-Warburton L, Allen MF (2001) Endo- and ectomycorrhizas in Quercus agrifolia Nee. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza 11:283–290

    Article  CAS  PubMed  Google Scholar 

  • Eissenstat DM, Graham JH, Syvertsen JP, Drouillard DL (1993) Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Ann Bot 71:1–10

    Article  CAS  Google Scholar 

  • Estrada-Luna AA, Davies FT Jr, Egilla JN (2000) Mycorrhizal fungi enhancement of growth and gas exchange of micropropagated guava plantlets (Psidium guajava L.) during ex vitro acclimatization and plant establishment. Mycorrhiza 10:1–8

    Article  CAS  Google Scholar 

  • Fitter AH (1991) Costs and benefits of mycorrhizas: implications for functioning under natural conditions. Experientia 47:350–355

    Article  Google Scholar 

  • Ford ED (2000) Scientific method for ecological research. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gange AC, Ayres RL (1999) On the relation between arbuscular mycorrhizal colonization and plant ‘benefit’. Oikos 87:615–621

    Article  Google Scholar 

  • Gazey C, Abbott LK, Robson AD (2004) Indigenous and introduced arbuscular mycorrhizal fungi contribute to plant growth in two agricultural soils from south-western Australia. Mycorrhiza 14:355–362

    Article  CAS  PubMed  Google Scholar 

  • Gerdemann JW (1968) Vesicular–arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6:397–418

    Article  Google Scholar 

  • Gerdemann JW (1975) Vesicular–arbuscular mycorrhizae. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic, London, pp 575–591

    Google Scholar 

  • Graham JH, Abbott LK (2000) Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220:207–218

    Article  CAS  Google Scholar 

  • Habte M, Manjunath A (1991) Categories of vesicular–arbuscular mycorrhizal dependency of host species. Mycorrhiza 1:3–12

    Article  Google Scholar 

  • Harris D, Paul EA (1987) Carbon requirements of vesicular–arbuscular mycorrhizae. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, Florida, pp 93–105

    Google Scholar 

  • Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms: exploring the paths between conflict and cooperation. TREE 14:49–53

    CAS  PubMed  Google Scholar 

  • Howeler RH, Asher CJ, Edwards DG (1982) Establishment of an effective endomycorrhizal association on cassava in flowing solution culture and its effects on phosphorus nutrition. New Phytol 90:229–238

    Article  CAS  Google Scholar 

  • Jakobsen I (1999) Transport of phosphorus and carbon in arbuscular mycorrhizas. In: Varma AK, Hock B (eds) Mycorrhiza. Springer, Berlin Heidelberg New York, pp 305–332

    Chapter  Google Scholar 

  • Janos DP (1975) Effects of vesicular–arbuscular mycorrhizae on lowland tropical rainforest trees. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, UK, pp 437–446

    Google Scholar 

  • Janos DP (1977) Vesicular–arbuscular mycorrhizae affect the growth of Bactris gasipaes. Principes 21:12–18

    Google Scholar 

  • Janos DP (1980a) Vesicular–arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology 61:151–162

    Article  Google Scholar 

  • Janos DP (1980b) Mycorrhizae influence tropical succession. Biotropica 12:56–64

    Article  Google Scholar 

  • Janos DP (1984) Methods for vesicular–arbuscular mycorrhiza research in the lowland wet tropics. In: Medina E, Mooney HA, Vasquez-Yanes C (eds) Physiological ecology of plants of the wet tropics, vol 12. Junk, The Hague, The Netherlands, pp 173–187

    Chapter  Google Scholar 

  • Janos DP (1988) Mycorrhiza applications in tropical forestry: are temperate-zone approaches appropriate? In: Ng FSP (ed) Trees and mycorrhiza. Forest Research Institute, Malaysia, Kuala Lumpur, Malaysia, pp 133–188

    Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M (2000) Promotion of utilization of arbuscular mycorrhiza through reduced P fertilization. 1. Bioassays in a growth chamber. Plant Soil 227:191–206

    Article  CAS  Google Scholar 

  • Koide RT (1985) The nature of growth depressions in sunflower caused by vesicular–arbuscular mycorrhizal infection. New Phytol 99:449–462

    Article  Google Scholar 

  • Koide RT (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:365–386

    Article  CAS  Google Scholar 

  • Leake JR, Johnson D, Donnelly D, Muckle G, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  • Linderman RG, Hendrix JW (1982) Evaluation of plant response to colonization by vesicular–arbuscular mycorrhizal fungi. A. Host variables. In: Schenck NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St. Paul, Minnesota, pp 69–76

    Google Scholar 

  • Lovelock CE, Miller R (2002) Heterogeneity in inoculum potential and effectiveness of arbuscular mycorrhizal fungi. Ecology 83:823–832

    Article  Google Scholar 

  • McGonigle TP (2001) On the use of non-linear regression with the logistic equation for changes with time of percentage root length colonized by arbuscular mycorrhizal fungi. Mycorrhiza 10:249–254

    Article  Google Scholar 

  • Menge JA, Johnson ELV, Platt RG (1978) Mycorrhizal dependency of several citrus cultivars under three nutrient regimes. New Phytol 81:553–559

    Article  CAS  Google Scholar 

  • Ortaš I (1996) The influence of use of different rates of mycorrhizal inoculum on root infection, plant growth, and phosphorus uptake. Commun Soil Sci Plant Anal 27:2935–2946

    Article  Google Scholar 

  • Pairunan AK, Robson AD, Abbott LK (1980) The effectiveness of vesicular–arbuscular mycorrhizas in increasing growth and phosphorus uptake of subterranean clover from phosphorus sources of different solubilities. New Phytol 84:327–338

    Article  CAS  Google Scholar 

  • Pearson JN, Jakobsen I (1993) Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol 124:481–488

    Article  CAS  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhiza dependency under field conditions. Plant Soil 70:199–209

    Article  CAS  Google Scholar 

  • Schroeder MS, Janos DP (2004) Phosphorus and intraspecific density alter plant responses to arbuscular mycorrhizas. Plant Soil 264:335–348

    Article  CAS  Google Scholar 

  • Sieverding E (1991) Vesicular–arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, Eschborn, Germany

  • Simard SW, Jones MD, Durall DM (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 33–74

    Google Scholar 

  • Siqueira JO, Saggin-Júnior OJ (2001) Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza 11:245–255

    Article  CAS  Google Scholar 

  • Smith FA, Smith SE (1996) Mutualism and parasitism: diversity in function and structure in the “arbuscular” (VA) mycorrhizal symbiosis. Adv Bot Res 22:1–43

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Tawaraya K (2003) Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci Plant Nutr 49:655–668

    Article  Google Scholar 

  • Tester MA, Smith SE, Smith FA (1988) The phenomenon of “non-mycorrhizal” plants. Can J Bot 65:419–431

    Article  Google Scholar 

  • Torti SD, Coley PD, Janos DP (1997) Vesicular–arbuscular mycorrhizae in two tropical monodominant trees. J Trop Ecol 13:623–629

    Article  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, Florida, pp 5–25

    Google Scholar 

  • Trotman AP, Weaver RW (2000) Survival of rhizobia on arrowleaf clover seeds under stresses of seed-coat toxins, heat and desiccation. Plant Soil 218:43–47

    Article  CAS  Google Scholar 

  • Urcelay C, Diaz S (2003) The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecol Lett 6:388–391

    Article  Google Scholar 

  • van der Heijden MGA (2002) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 244–265

    Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • Wang B, Qui Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Zangaro W, Bononi VLR, Trufen SB (2000) Mycorrhizal dependency, inoculum potential and habitat preference of native woody species in South Brazil. J Trop Ecol 16:603–622

    Article  Google Scholar 

  • Zhu YG, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255

    Article  CAS  Google Scholar 

Download references

Acknowledgment

I thank Michelle Schroeder and Blase Maffia for discussion of the ideas presented here. Andrew Smith provided invaluable guidance for which I am especially grateful. Andrew and Sally Smith, Nancy Johnson, Jim Graham, and Iver Jakobsen graciously provided information. Catalina Aristizábal, Alastair Fitter, Sara Garamszegi, Laurie McHargue, Michelle Schroeder, Jim Spurney, Tania Wyss, and two anonymous reviewers helpfully critiqued the manuscript. Michelle Schroeder supplied data for Fig. 4. Philipp Noger and Mohamed Bakarr helped to determine the phosphorus response of T. cinerariifolium with support to DPJ from the S. C. Johnson Company and a Bullard Fellowship from Harvard University. Preparation of this paper was partially supported by NSF IBN 0315225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Janos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janos, D.P. Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17, 75–91 (2007). https://doi.org/10.1007/s00572-006-0094-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-006-0094-1

Keywords

Navigation