Skip to main content
Log in

Fungal and plant gene expression in arbuscular mycorrhizal symbiosis

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

An Erratum to this article was published on 18 November 2006

Abstract

Arbuscular mycorrhizas (AMs) are a unique example of symbiosis between two eukaryotes, soil fungi and plants. This association induces important physiological changes in each partner that lead to reciprocal benefits, mainly in nutrient supply. The symbiosis results from modifications in plant and fungal cell organization caused by specific changes in gene expression. Recently, much effort has gone into studying these gene expression patterns to identify a wider spectrum of genes involved. We aim in this review to describe AM symbiosis in terms of current knowledge on plant and fungal gene expression profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Albrecht C, Geurts R, Bisseling T (1998) Legume nodulation and mycorrhizae formation; two extremes in host specificity meet. EMBO J 18:281–288

    Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    PubMed  CAS  Google Scholar 

  • Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Levy J, Debelle F, Baek JM, Kalo P et al (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367

    PubMed  Google Scholar 

  • Aono T, Maldonado-Mendoza IE, Dewbre GR, Harrison MJ, Saito M (2004) Expression of alkaline phosphatase genes in arbuscular mycorrhizas. New Phytol 162:525–553

    CAS  Google Scholar 

  • Ayling SM, Smith SE, Smith FA (2000) Transmembrane electric potential difference of germ tubes of arbuscular mycorrhizal fungi responds to external stimuli. New Phytol 147:631–639

    Google Scholar 

  • Bago B, Chamberland H, Goulet A, Vierheilig H, Lafontaine JG, Piché Y (1996) Effect of nikkomycin Z, a chitin-synthase inhibitor, on hyphal growth and cell wall structure of two arbuscular–mycorrhizal fungi. Protoplasma 192:80–92

    CAS  Google Scholar 

  • Bago B, Shachar-Hill Y, Pfeffer PE (2000) Dissecting carbon pathways in arbuscular mycorrhizas with NMR spectroscopy. In: Podila GK, Douds DD (eds) Current advances in mycorrhizae research. APS, St. Paul, USA, pp 111–126

    Google Scholar 

  • Bago B, Zipfel W, Williams RC, Jun J, Arreola R, Pfeffer PE, Lammers PJ, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124

    PubMed  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507

    PubMed  CAS  Google Scholar 

  • Balestrini R, Bonfante P (2005) The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall? Plant Biosyst 139:8–15

    Google Scholar 

  • Balestrini R, Josè-Estanyol M, Puigdomènech P, Bonfante P (1997) Hydroxyproline rich glycoprotein mRNA accumulation in maize root cells colonized by the arbuscular mycorrhizal fungus as revealed by in situ hybridization. Protoplasma 198:36–42

    CAS  Google Scholar 

  • Balestrini R, Perotto S, Gasverde E, Dahiya P, Guldmann LL, Brewin NJ, Bonfante P (1999) Transcription of a gene encoding a lectin like glycoprotein is induced in root cells harbouring arbuscular mycorrhizal fungi in Pisum sativum. Mol Plant-Microb Interact 12:785–791

    CAS  Google Scholar 

  • Balestrini R, Cosgrove DJ, Bonfante P (2005) Differential location of alpha-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus. Planta 220:889–899

    PubMed  CAS  Google Scholar 

  • Beilby JP, Kidby DK (1980) Biochemistry of ungerminated and germinated spores of the vesicular–arbuscular mycorrhizal fungus Glomus caledonium: changes in neutral and polar lipids. J Lipid Res 21:739–750

    PubMed  CAS  Google Scholar 

  • Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15:620–627

    PubMed  CAS  Google Scholar 

  • Berta G, Fusconi A, Sampo S, Lingua G, Perticone S, Repetto O (2000) Polyploidy in tomato roots as affected by arbuscular mycorrhizal colonization. Plant Soil 226:37–44

    CAS  Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E, Gianinazzi S (2003) Proteomics as a tool to monitor plant–microbe endosymbioses in the rhizosphere. Mycorrhiza 14:1–10

    PubMed  Google Scholar 

  • Bianciotto V, Barbiero G, Bonfante P (1995) Analysis of the cell-cycle in an arbuscular mycorrhizal fungus by flow-cytometry and bromodeoxyuridine labelling. Protoplasma 188:161–169

    Google Scholar 

  • Bianciotto V, Perotto S, Ruiz-Lozano JM, Bonfante P (2002) Arbuscular mycorrhizal fungi and soil bacteria: from cellular investigations to biotechnological perspectives. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birknäuser Verlag, Switzerland, pp 19–31

    Google Scholar 

  • Blancaflor EB, Zhao L, Harrison MJ (2001) Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Protoplasma 217:154–165

    PubMed  CAS  Google Scholar 

  • Blee KA, Anderson AJ (2000) Defense responses in plants to arbuscular mycorrhizal fungi. In: Podila GK, Douds DD (eds) Current advances in mycorrhizae research. APS, St. Paul, USA, pp 27–44

    Google Scholar 

  • Blilou I, Bueno P, Ocampo JA, Garcia-Garrido J (2000) Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae. Mycol Res 104:722–725

    CAS  Google Scholar 

  • Bonanomi A, Oetiker JH, Guggenheim R, Boller T, Wiemken A, Vögeli-Lange R (2001) Arbuscular mycorrhizas in mini-mycorrhizotrons: first contact of Medicago truncatula roots with Glomus intraradices induces chalcone synthase. New Phytol 150:573–582

    CAS  Google Scholar 

  • Bonfante P (2001) At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. In: Esser K, Hock B (eds) The mycota IX. Springer, Berlín Heidelberg New York, pp 45–61

    Google Scholar 

  • Bonfante P, Balestrini R, Mendgen K (1994) Storage and secretion processes in the spore of Gigaspora margarita Becker and Hall as revealed by high-pressure freezing and freeze substitution. New Phytol 128:93–101

    Google Scholar 

  • Bonfante P, Bergero R, Uribe X, Romera C, Rigau J, Puigdoménech P (1996) Transcriptional activation of a maize-tubulin gene in mycorrhizal maize and transgenic tobacco plants. Plant J 9:737–743

    CAS  Google Scholar 

  • Bonfante P, Genre A, Faccio A, Martini I, Schauser L, Stougaard J, Webb J, Parniske M (2000) The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells. Mol Plant-Microb Interact 13:1109–1120

    CAS  Google Scholar 

  • Brechenmacher L, Weidmann S, van Tuinen D, Chatagnier O, Gianinazzi S, Franken P, Gianinazzi-Pearson V (2004) Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula–Glomus mosseae interactions. Mycorrhiza 14:253–262

    PubMed  CAS  Google Scholar 

  • Breuninger M, Requena N (2004) Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage. Fungal Genet Biol 41:794–804

    PubMed  CAS  Google Scholar 

  • Breuninger M, Trujillo CG, Serrano E, Fischer R, Requena N (2004) Different nitrogen sources modulate activity but not expression of glutamine synthetase in arbuscular mycorrhizal fungi. Fungal Genet Biol 41:542–552

    PubMed  CAS  Google Scholar 

  • Brewin NJ (2004) Plant cell wall remodelling in the Rhizobium–legume symbiosis. Crit Rev Plant Sci 23:293–316

    CAS  Google Scholar 

  • Brummell DA, Bird CR, Schuch W, Bennett AB (1997) An endo-1, 4-β-glucanase expressed at high levels in rapidly expanding tissues. Plant Mol Biol 33:87–95

    PubMed  CAS  Google Scholar 

  • Bucking H, Shachar-Hill Y (2005) Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol 165:899–912

    PubMed  Google Scholar 

  • Buée M, Rossignol M, Jauneau A, Ranjeva R, Becard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant-Microb Interact 13:693–698

    Google Scholar 

  • Burleigh SH (2001) Relative quantitative PCR to study nutrient transport processes in arbuscular mycorrhizas. Plant Sci 160:899–904

    PubMed  CAS  Google Scholar 

  • Burleigh SH, Harrison MJ (1997) A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant Mol Biol 34:199–208

    PubMed  CAS  Google Scholar 

  • Chabaud M, Venard C, Defaux-Petras A, Becard G, Barker DG (2002) Targeted inoculation of Medicago truncatula in vitro root cultures reveals MtENOD11 expression during early stages of infection by arbuscular mycorrhizal fungi. New Phytol 156:265–273

    CAS  Google Scholar 

  • Day RC, Grossniklaus U, Macknight RC (2005) Be more specific! Laser-assisted microdissection of plant cells. Trends Plant Sci 10:340–397

    Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    PubMed  CAS  Google Scholar 

  • Delp G, Timonen S, Rosewarne GM, Barker SJ, Smith S (2003) Differential expression of Glomus intraradices genes in external mycelium and mycorrhizal roots of tomato and barley. Mycol Res 107:1083–1093

    PubMed  CAS  Google Scholar 

  • Demartsev V, Aussenberg ER, Gadkar V, Koltai H, Zilberstein A, Kapulnik Y (2005) Alteration in tomato (Lycopersicon esculentum) gene expression during early stages of the interaction with Glomus intraradices. In: Management committee and final meeting on “Achievements and Future Landscape for Arbuscular Mycorrhiza Research”, Dijon, France, 2–4 June 2005

  • Doll J, Hause B, Demchenko K, Pawlowski K, Krajinski F (2003) A member of the germin-like protein family is a highly conserved mycorrhiza-specific induced gene. Plant Cell Physiol 44:1208–1214

    PubMed  CAS  Google Scholar 

  • Duc G, Trouvelet A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of nonmycorrhizal plant mutants (Myc-) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci 60:215–222

    Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kaló, P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    PubMed  CAS  Google Scholar 

  • Ezawa T, Hayatsu M, Saito M (2005) A new hypothesis on the strategy for acquisition of phosphorus in arbuscular mycorrhiza: up-regulation of secreted acid phosphatase gene in the host plant. Mol Plant-Microb Interact 18:1046–1053

    CAS  Google Scholar 

  • Fehlberg V, Vieweg MF, Dohmann EMN, Hohnjec N, Pühler A, Perlick AM, Küster H (2005) The promoter of the leghaemoglobin gene VfLb29: functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. J Exp Bot 56:799–806

    PubMed  CAS  Google Scholar 

  • Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379

    PubMed  CAS  Google Scholar 

  • Fester T, Schmidt D, Lohse S, Walter MH, Giuliano G, Bramley PM, Fraser PD, Hause B, Strack D (2002a) Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta 216:148–154

    PubMed  CAS  Google Scholar 

  • Fester T, Hause B, Schmidt D, Halfmann K, Schmidt J, Wray V, Hause G, Strack D (2002b) Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots. Plant Cell Physiol 43:256–265

    PubMed  CAS  Google Scholar 

  • Frenzel A, Manthey K, Perlick AM, Meyer F, Puhler A, Kuster H, Krajinski F (2005) Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Mol Plant-Microb Interact 18:771–782

    CAS  Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    PubMed  CAS  Google Scholar 

  • García-Rodríguez S, Pozo MJ, Azcón-Aguilar C, Ferrol N (2005) Expression of a tomato sugar transporter is increased in leaves of mycorrhizal or Phytophthora parasitica-infected plants. Mycorrhiza 15:489–496

    PubMed  Google Scholar 

  • Gaspar L, Pollero RJ, Cabello M (1994) Triacylglycerol consumption during spore germination of vesicular–arcuscular mycorrhizal fungi. J Am Oil Chem Soc 71:449–452

    CAS  Google Scholar 

  • Genre A, Bonfante P (2005) Building a mycorrhizal cell: How to reach compatibility between plants and arbuscular mycorrhizal fungi. J Plant Interact 1:3–13

    CAS  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499

    PubMed  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Denarié J (1997) Red carpet genetic programmes for root endosymbioses. Trends Plant Sci 10:371–372

    Google Scholar 

  • Gianinazzi-Pearson V, Gollotte A, Lherminier J, Tisserant B, Franken P, Dumas-Gaudot E, Lemoine MC, van Tuinen D, Gianinazzi S (1995) Cellular and molecular approaches in the characterization of symbiotic events in functional arbuscular mycorrhizal associations. Can J Bot 73:S526–S532

    CAS  Google Scholar 

  • Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211:609–613

    PubMed  CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol 125:587–594

    Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    PubMed  CAS  Google Scholar 

  • Grunwald U, Nyamsuren O, Tamasloukht M, Lapopin L, Becker A, Mann P, Gianinazzi-Pearson V, Krajinski F, Franken P (2004) Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Mol Biol 55:553–566

    PubMed  CAS  Google Scholar 

  • Güimil S, Chang H-S, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070

    PubMed  Google Scholar 

  • Hans J, Hause B, Strack D, Walter MH (2004) Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-D-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize. Plant Physiol 134:614–624

    PubMed  CAS  Google Scholar 

  • Harrison MJ (1996) A sugar transporter from Medicago truncatula: altered expression pattern in roots during vesicular–arbuscular (VA) mycorrhizal associations. Plant J 9:491–503

    PubMed  CAS  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    PubMed  CAS  Google Scholar 

  • Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular–arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant-Microb Interact 6:643–654

    CAS  Google Scholar 

  • Harrison M, Dixon R (1994) Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 6:9–20

    CAS  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    PubMed  CAS  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    PubMed  CAS  Google Scholar 

  • Hause B, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184–196

    PubMed  CAS  Google Scholar 

  • He XL, Mouratov S, Steinberger Y (2002) Temporal and spatial dynamics of vesicular–arbuscular mycorrhizal fungi under the canopy of Zygophyllum dumosum Boiss. in the Negev Desert. J Arid Environ 52:379–387

    Google Scholar 

  • Hildebrandt U, Schmelzer E, Bothe H (2002) Expression of nitrate transporter genes in tomato colonized by an arbuscular mycorrhizal fungus. Physiol Plant 115:125–136

    PubMed  CAS  Google Scholar 

  • Hirsch AM, Kapulnik Y (1998) Signal transduction pathways in mycorrhizal associations: comparisons with the Rhizobium–legume symbiosis. Fungal Genet Biol 23:205–212

    PubMed  CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    PubMed  CAS  Google Scholar 

  • Hohnjec N, Perlick AM, Puhler A, Kuster H (2003) The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant-Microb Interact 16:903–915

    CAS  Google Scholar 

  • Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301

    PubMed  CAS  Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531

    PubMed  CAS  Google Scholar 

  • Ivashuta S, Liu J, Liu J, Lohar DP, Haridas S, Bucciarelli B, VandenBosch KA, Vance CP, Harrison MJ, Gantt JS (2005) RNA interference identifies a calcium dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17:2911–2921

    PubMed  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1993) Hyphal transport by a vesicular–arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fertil Soils 16:66–70

    CAS  Google Scholar 

  • Journet EP, El-Gachtouli N, Vernoud V, de Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V (2001) Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol Plant-Microb Interact 14:737–748

    CAS  Google Scholar 

  • Journet EP, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ, Niebel A, Schiex T, Jaillon O, Chatagnier O et al (2002) Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Res 30:5579–5592

    PubMed  Google Scholar 

  • Jun J, Abubaker J, Rehrer C, Pfeffer PE, Shachar-Hill Y, Lammers PJ (2002) Expression in an arbuscular mycorrhizal fungus of genes putatively involved in metabolism, transport, the cytoskeleton and the cell cycle. Plant Soil 244:141–148

    CAS  Google Scholar 

  • Kapulnik Y, Volpin H, Itzhaki H, Ganon D, Galili S, David R, Shaul O, Elad Y, Chet I, Okon Y (1996) Suppression of defence responses in mycorrhizal alfalfa and tobacco roots. New Phytol 133:59–64

    Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    PubMed  CAS  Google Scholar 

  • Kistner C, Parniske M (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7:511–518

    PubMed  CAS  Google Scholar 

  • Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229

    PubMed  CAS  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    PubMed  CAS  Google Scholar 

  • Krajinski F, Martin-Laurent F, Gianinazzi S, Gianinazzi-Pearson V, Franken F (1998) Cloning and analysis of psam2, a gene from Pisum sativum L. regulated insymbiotic arbuscular mycorrhiza and pathogenic root–fungus interactions. Physiol Plant Mol Pathol 52:297–307

    CAS  Google Scholar 

  • Krajinski F, Hause B, Gianinazzi-Pearson V, Franken P (2002) Mtha1, a plasma membrane H+-ATPase gene from Medicago truncatula, shows arbuscule specific induced expression in mycorrhizal tissue. Plant Biol 4:754–761

    CAS  Google Scholar 

  • Kuster H, Hohnjec, Krajinski F, El Yahyaoui F, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Puhler A, Gamas P, Becker A (2004) Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. J Biotechnol 108:95–113

    PubMed  CAS  Google Scholar 

  • Lambais MR, Mehdy MC (1993) Suppression of endochitinase, β-1, 3-endoglucanase and chalcone isomerase expression in bean vesicular–arbuscular mycorrhizal roots under different soil phosphate conditions. Mol Plant-Microb Interact 6:75–83

    CAS  Google Scholar 

  • Lambais MR, Mehdy MC (1998) Spatial distribution of chitinases and β-1,3-glucanase transcripts in bean arbuscular mycorrhizal roots under low and high soil phosphate conditions. New Phytol 140:33–42

    CAS  Google Scholar 

  • Lammers PJ, Jun J, Abubaker J, Arreola R, Gopalan A, Bago B, Hernandez-Sebastia C, Allen JW, Douds DD, Pfeffer PE et al (2001) The glyoxylate cycle in an arbuscular mycorrhizal fungus: gene expression and carbon flow. Plant Physiol 127:1287–1298

    PubMed  CAS  Google Scholar 

  • Lanfranco L, Gabella S, Bonfante P (2000) EST as a useful tool for studying gene expression in arbuscular mycorrhizal fungi. In: Weber H, Imhof S, Zeuske D (eds) Abstract and papers of the Third International Congress on Symbiosis. University of Marburg, 13–19 August 2000, Marburg, Germany, pp 108–114

  • Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67

    PubMed  CAS  Google Scholar 

  • Lanfranco L, Novero M, Bonfante P (2005) The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxidedismutase which is up-regulated during the symbiosis with legume hosts. Plant Physiol 137:1319–1330

    PubMed  CAS  Google Scholar 

  • Lei J, Bécard G, Catford JG, Piché Y (1991) Root factors stimulate 32P uptake and plasmalemma ATPase activity in vesicular–arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 118:289–294

    CAS  Google Scholar 

  • Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T et al (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364

    PubMed  Google Scholar 

  • Liu J, Blaylock LA, Endre G, Cho J, Town CD, Vanden Bosch KA, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of the arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123

    PubMed  CAS  Google Scholar 

  • Liu J, Blaylock LA, Harrison MJ (2004) cDNA arrays as a tool to identify mycorrhiza-regulated genes: identification of mycorrhiza-induced genes that encode or generate signaling molecules implicated in the control of root growth. Can J Bot 82:1177–1185

    CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant-Microb Interact 14:1140–1148

    CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, van Buuren ML, Versaw WK, Harrison MJ (2002) Methods to estimate the proportion of plant and fungal RNA in an arbuscular mycorrhiza. Mycorrhiza 12:67–74

    PubMed  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Blaylock L, Harrison MJ (2005) Expression of a xyloglucan endotransglucosylase/hydrolase gene, Mt-XTH1, from Medicago truncatula is induced systemically in mycorrhizal roots. Gene 345:191–197

    PubMed  CAS  Google Scholar 

  • Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Puhler A, Perlick AM, Kuster H (2004) Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant-Microb Interact 17:1063–1077

    CAS  Google Scholar 

  • Marsh JF, Schultze M (2001) Analysis of arbuscular mycorrhizas using symbiosis defective plant mutants. New Phytol 150:525–532

    Google Scholar 

  • Martin-Laurent F, van Tuinen D, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S, Franken P (1997) Differential display analysis of RNA accumulation in arbuscular mycorrhiza of pea and isolation of a novel symbiosis-regulated plant gene. Mol Gen Genet 256:37–44

    PubMed  CAS  Google Scholar 

  • Morandi D, Prado E, Sagan M, Duc G (2005) Characterization of new symbiotic Medicago truncatula (Gaertn.) mutants, and phenotypic or genotypic complementary information on previously described mutants. Mycorrhiza 15:283–289

    PubMed  Google Scholar 

  • Mosse B, Hepper CM (1975) Vesicular–arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215–223

    Article  Google Scholar 

  • Murphy PJ, Langridge P, Smith SE (1997) Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare by the vesicular arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 135:291–301

    CAS  Google Scholar 

  • Nagahashi G, Douds DD (1997) Appressorium formation by AM fungi on isolated cell walls of carrot roots. New Phytol 136:299–304

    Google Scholar 

  • Nagahashi G, Douds DD (2000) Partial separation of the root exudates components and their effects upon the growth of germinated spores of AM fungi. Mycol Res 104:1453–1464

    Google Scholar 

  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht MB, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

    PubMed  CAS  Google Scholar 

  • Olah B, Brière C, Bécard G, Dénarie’ J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207

    PubMed  CAS  Google Scholar 

  • Oldroyd GED, Harrison MJ, Udvardi M (2005) Peace talks and trade deals. Keys to long-term harmony in legume–microbe symbioses. Plant Physiol 137:1205–1210

    PubMed  CAS  Google Scholar 

  • Parniske M (2004) Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 7:414–421

    PubMed  CAS  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    PubMed  CAS  Google Scholar 

  • Podila GK, Lanfranco L (2004) Genomics approaches to unravel mycorrhizal symbiosis. In: Varma A, Werner H (eds) Plant surface microbiology. Springer, Berlin Heidelberg New York, pp 561–592

    Google Scholar 

  • Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466

    PubMed  CAS  Google Scholar 

  • Ravnskov S, Wu Y, Graham JH (2003) Arbuscular mycorrhizal fungi differentially affect expression of genes coding for sucrose synthases in maize roots. New Phytol 157:539–545

    CAS  Google Scholar 

  • Requena N, Fuller P, Franken P (1999) Molecular characterization of Gm-FOX2, an evolutionarily highly conserved gene from the mycorrhizal fungus Glomus mosseae, down-regulated during interaction with rhizobacteria. Mol Plant-Microb Interact 12:934–942

    CAS  Google Scholar 

  • Requena N, Mann P, Franken P (2000) A homologue of the cell cycle check point TOR2 from Saccharomyces cerevisiae exists in the arbuscular mycorrhizal fungus Glomus mosseae. Protoplasma 212:89–98

    CAS  Google Scholar 

  • Requena N, Mann P, Hampp R, Franken P (2002) Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae: identification of GmGIN1, a novel gene with homology to the C-terminus of metazoan hedgehog proteins. Plant Soil 244:129–139

    CAS  Google Scholar 

  • Requena N, Breuninger M, Franken P, Ocón A (2003) Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiol 132:1–10

    Google Scholar 

  • Rhody D, Stommel M, Roeder C, Mann P, Franken P (2003) Differential RNA accumulation of two β-tubulin genes in arbuscular mycorrhizal fungi. Mycorrhiza 13:137–142

    PubMed  CAS  Google Scholar 

  • Rosewarne G, Barker SJ, Smith SE, Smith FA, Schachtman DP (1999) A Lycopersicon esculetum phosphate transporter (LePT1) involved in phosphorus uptake from a vesicular–arbuscular mycorrhizal fungus. New Phytol 144:507–516

    CAS  Google Scholar 

  • Roussel H, van Tuinen D, Franken P, Gianinazzi S, Gianinazzi-Pearson V (2001) Signalling between arbuscular mycorrhizal fungi and plants: identification of a gene expressed during early interactions by differential RNA display analysis. Plant Soil 232:13–19

    CAS  Google Scholar 

  • Ruíz-Lozano JM, Roussel H, Gianinazzi S, Gianinazzi-Pearson V (1999) Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes. Mol Plant-Microb Interact 12:976–984

    Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcon R (2001) Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorrhizal symbiosis and by drought stress. J Exp Bot 52:2241–2242

    PubMed  CAS  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Porcel R, Azcon R, Barea JM (2002) Identification of a cDNA from the arbuscular mycorrhizal fungus Glomus intraradices that is expressed during mycorrhizal symbiosis and up-regulated by N fertilization. Mol Plant-Microb Interact 15:360–367

    CAS  Google Scholar 

  • Salzer P, Corbière H, Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208:319–325

    CAS  Google Scholar 

  • Salzer P, Bonanomi A, Beyer K, Vögeli-Lange R, Aeschbacher RA, Lang J, Wiemken A, Kim D, Cook DR, Boller T (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation and pathogen infection. Mol Plant-Microb Interact 13:763–777

    CAS  Google Scholar 

  • Sanchez L, Weidmann S, Arnould C, Bernard AR, Gianinazzi S, Gianinazzi-Pearson V (2005) Pseudomonas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula. Plant Physiol 139:1065–1077

    PubMed  CAS  Google Scholar 

  • Sawaki H, Saito M (2001) Expressed genes in the extraradical hyphae of an arbuscular mycorrhizal fungus, Glomus intraradices, in the symbiotic phase. FEMS Microbiol Lett 195:109–113

    PubMed  CAS  Google Scholar 

  • Slezack S, Dumas-Gaudot E, Paynot M, Gianinazzi S (2000) Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches? Mol Plant-Microb Interact 13:238–241

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London, UK

    Google Scholar 

  • Smith SE, Smith AF, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    PubMed  CAS  Google Scholar 

  • Spanu P, Boller T, Ludwig A, Wiemken A, Faccio A (1989) Chitinase in roots of mycorrhizal Allium porrum: regulation and localization. Planta 177:447–455

    CAS  Google Scholar 

  • Stommel M, Mann P, Franken P (2001) EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza 10:281–285

    CAS  Google Scholar 

  • Stougaard J (2001) Genetics and genomics of root symbiosis. Curr Opin Plant Biol 4:328–335

    PubMed  CAS  Google Scholar 

  • Tahiri-Alaoui A, Lingua G, Avrova A, Sampò S, Fusconi A, Antoniw J, Berta G (2002) A cullin gene is induced in tomato roots forming arbuscular mycorrhizae. Can J Bot 80:607–616

    CAS  Google Scholar 

  • Tamasloukht MB, Sejalon-Delmas N, Kluever A, Jauneau A, Roux C, Becard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478

    PubMed  CAS  Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250

    Article  CAS  Google Scholar 

  • Trépanier M, Bécard G, Moutoglis P, Willemot C, Gagné S, Avis TJ, Rioux JA (2005) Dependence of arbuscular mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Environ Microbiol 71:5341–5347

    PubMed  Google Scholar 

  • van Buuren ML, Maldonado-Mendoza IE, Trieu AT, Blaylock LA, Harrison MJ (1999) Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus versiforme. Mol Plant-Microb Interact 12:171–181

    Google Scholar 

  • Versaw WK, Chiou TJ, Harrison MJ (2002) Phosphate transporters of Medicago truncatula and arbuscular mycorrhizal fungi. Plant Soil 244:239–245

    CAS  Google Scholar 

  • Vieweg MF, Fruhling M, Quandt HJ, Heim U, Baumlein H, Puhler A, Kuster H, Perlick AM (2004) The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and non legume plants. Mol Plant-Microb Interact 17:62–69

    CAS  Google Scholar 

  • Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the nonmevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. Plant J 21:571–578

    PubMed  CAS  Google Scholar 

  • Weidmann S, Sanchez L, Descombin J, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V (2004) Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Mol Plant-Microb Interact 17:1385–1393

    CAS  Google Scholar 

  • Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Kuster H, Krajinski F (2003) Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant-Microb Interact 16:306–314

    CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize to those whose work was not cited because of space limitations. They thank Paola Bonfante and Silvia Perotto for critically reading the manuscript, Robert Milne for the linguistic revision, Marta Vallino for Fig. 1, the editor and reviewers for constructive suggestions. They acknowledge support by IPP-CNR, CEBIOVEM (D.M. 17/10/2003), Italian FIRB (RBNE01KZE7), and Regione Piemonte (CIPE B74) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Balestrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balestrini, R., Lanfranco, L. Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16, 509–524 (2006). https://doi.org/10.1007/s00572-006-0069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-006-0069-2

Keywords

Navigation