Skip to main content
Log in

Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Suppression subtractive hybridization (SSH), expression profiling and EST sequencing identified 12 plant genes and six fungal genes that are expressed in the arbuscular mycorrhizal symbiosis between Medicago truncatula and Glomus mosseae. All the plant genes and three of the fungal genes were up-regulated in symbiotic tissues. Expression of 15 of the genes is described for the first time in mycorrhizal roots and two are novel sequences. Six M. truncatula genes were also activated during appressorium formation at the root surface, suggesting a role in this early stage of mycorrhiza establishment, whilst the other six plant genes were only induced in the late stages of mycorrhization and could be involved in the development or functioning of the symbiosis. Phosphate fertilization had no significant influence on expression of any of the plant genes. Expression profiling of G. mosseae genes indicated that two of them may be associated with appressorium development on roots and one with arbuscule formation or function. The other three fungal genes were expressed throughout the life-cycle of G. mosseae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2a, b.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Albrecht C, Geurts R, Bisseling T (1999) Legume nodulation and mycorrhizae formation; two extremes in host specificity meet. EMBO J 18:281–288

    Article  CAS  PubMed  Google Scholar 

  • Arner ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    CAS  PubMed  Google Scholar 

  • Azcon R, Tobar R (1998) Activity of nitrate reductase and glutamine synthetase in shoot and root of mycorrhizal Allium cepa. Effect of drought stress. Plant Sci 133:1–8

    Article  Google Scholar 

  • Bernier F, Berna A (2001) Germins and germin-like proteins: plant do-all proteins. But what do they do exactly? Plant Physiol Biochem 39:545–554

    Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, Dierick JF, van Tuinen D, Remacle J, Gianinazzi-Pearson V, Gianinazzi S (2002) Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry. Electrophoresis 23:122–137

    Article  CAS  PubMed  Google Scholar 

  • Blee KA, Anderson AJ (2000) Defense responses in plants to arbuscular mycorrhizal fungi. In: Podila G (eds) Current advances in mycorrhizal research, American Phytopathology Society, St. Paul, Minn, pp 27–44

  • Burleigh SH, Harrison MJ (1998) A cDNA from the arbuscular mycorrhizal fungus Glomus versiforme with homology to a cruciform DNA-binding protein from Ustilago maydis. Mycorrhiza 7:301–306

    Article  CAS  Google Scholar 

  • Butehorn B, Gianinazzi-Pearson V, Franken P (1999) Quantification of beta-tubulin RNA expression during asymbiotic and symbiotic development of the arbuscular mycorrhizal fungus Glomus mosseae. Mycol Res 103:360–364

    Article  Google Scholar 

  • Cliquet J, Stewart G (1993) Ammonia assimilation in Zea mays L. infected with a vesicular-arbuscular mycorrhizal fungus Glomus fasciculatum. Plant Physiol 101:865–871

    CAS  PubMed  Google Scholar 

  • Delp G, Smith SE, Barker SJ (2000) Isolation by differential display of three partial cDNAs potentially coding for proteins from the VA mycorrhizal Glomus intraradices. Mycol Res 104:293–300

    Article  CAS  Google Scholar 

  • Diatchenko L, Chris LYF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov K, Gurskaya N, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    CAS  PubMed  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Flavell RB (1980) The molecular characterization and organization of plant chromosomal DNA sequences. Annu Rev Plant Physiol 31:569–596

    Article  CAS  Google Scholar 

  • Franken P, Gnädinger F (1994) Analysis of parsley arbuscular endomycorrhiza: infection development and mRNA levels of defense-related genes. Mol Plant Microbe Interact 7:612–620

    CAS  Google Scholar 

  • Franken P, Requena N (2000) Molecular approaches to arbuscular mycorrhiza functioning. In: Hock B (eds) The Mycota, IX. Springer, Berlin Heidelberg New York, pp 19–28

  • Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8:1871–1883

    Google Scholar 

  • Gianinazzi-Pearson V, Denarie J (1997) Red carpet genetic programmes for root endosymbioses. Trends Plant Sci 2:371–372

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S (1996) Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133:45–57

    Google Scholar 

  • Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211:609–613

    CAS  PubMed  Google Scholar 

  • Giovannetti M, Sbrana C (1998) Meeting a non-host: the behaviour of AM fungi. Mycorrhiza 8:123–130

    Article  Google Scholar 

  • Giovannetti M, Avio L, Sbrana C, Citernesi AS (1993) Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe. New Phytol 123:115–122

    Google Scholar 

  • Giovannetti M, Sbrana C, Logi C (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol 127:703–709

    Google Scholar 

  • Gish W, States DJ (1993) Identification of protein coding regions by database similarity search. Nature Genet 3:266–272

    CAS  PubMed  Google Scholar 

  • Godoy A, Lazzaro A, Casalongue C, San Segundo B (2000) Expression of a Solanum tuberosum cyclophilin gene is regulated by fungal infection and abiotic stress conditions. Plant Sci 152:123–134

    Article  CAS  Google Scholar 

  • Harrier L (2001) The arbuscular mycorrhizal symbiosis: a molecular review of the fungal dimension. J Exp Bot 52:469–478

    CAS  PubMed  Google Scholar 

  • Harrison MJ (1999a) Biotrophic interfaces and nutrient transport in plant fungal symbioses. J Exp Bot 50:1013–1022

    CAS  Google Scholar 

  • Harrison MJ (1999b) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389

    CAS  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:1–17

    Article  CAS  PubMed  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in studies of plant nutrition. Commonwealth Agricultural Bureau, London

  • Hoeberichts F, Orzaez D, van der Plas LHW, Woltering E (2001) Changes in gene expression during programmed cell death in tomato cell suspensions. Plant Mol Biol 45:641–654

    Article  CAS  PubMed  Google Scholar 

  • Hurkman W, Tanaka C (1996) Germin gene expression is induced in wheat leaves by powdery mildew infection. Plant Physiol 111:735–739

    CAS  PubMed  Google Scholar 

  • Journet EP, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P (2002) Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucl Acids Res 30:5579–5592

    Article  Google Scholar 

  • Lapopin L, Franken P (2001) Modification of plant gene expression. In: Kapulnik Y, Douds D (eds) Arbuscular mycorrhizas: molecular biology and physiology, Kluwer, Dordrecht, pp 69–84

  • Miao GH, Verma DP (1993) Soybean nodulin-26 gene encoding a channel protein is expressed only in the infected cells of nodules and is regulated differently in roots of homologous and heterologous plants. Plant Cell 5:781–794

    Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, van Buuren ML, Versaw WK, Harrison MJ (2002) Methods to estimate the proportion of plant and fungal RNA in an arbuscular mycorrhiza. Mycorrhiza 12:67–74

    Article  CAS  PubMed  Google Scholar 

  • Martin-Laurent F, van Tuinen D, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S, Franken P (1997) Differential display analysis of RNA accumulation in arbuscular mycorrhiza of pea and isolation of a novel symbiosis-regulated plant gene. Mol Gen Genet 256:37–44

    Article  CAS  PubMed  Google Scholar 

  • Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751

    Google Scholar 

  • Ouyang LJ, Whelan J, Weaver CD, Roberts DM, Day DA (1991) Protein phosphorylation stimulates the rate of malate uptake across the peribacteroid membrane of soybean nodules. FEBS Lett 293:188–90

    Article  CAS  PubMed  Google Scholar 

  • Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular-arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    CAS  PubMed  Google Scholar 

  • Requena N, Mann P, Hampp R, Franken P (2002) Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae: identification of GmGIN1, a novel gene with homology to the C-terminus of metazoan hedgehog proteins. Plant Soil 244:129–139

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Roussel H, Gianinazzi S, Gianinazzi-Pearson V (1999) Defence genes are differentially induced by a mycorrhizal fungus and Rhizobium in wild type and symbiosis-defective pea genotypes. Mol Plant Microbe Interact 12:976–984

    CAS  Google Scholar 

  • Sambrook J, Fritsch EJ, Maniatis T (eds) (1989) Molecular cloning : a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Staples R, Macko V (1980) Formation of infection structures as a recognition response in fungi. Exp Mycol 4:2–16

    Google Scholar 

  • Strittmatter G, Gheysen G, Gianinazzi-Pearson V, Hahn K, Niebel A, Rohde W, Tacke E (1996) Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato gst1 gene. Mol Plant Microbe Interact 9:68–73

    CAS  PubMed  Google Scholar 

  • Tahiri-Alaoui A, Antoniw JF (1996) Cloning of genes associated with the colonization of tomato roots by the arbuscular mycorrhizal fungus Glomus mosseae. Agronomie 16:699–707

    Google Scholar 

  • Taylor J, Harrier LA (2003) Expression studies of plant genes differentially expressed in leaf and root tissues of tomato colonised by the arbuscular mycorrhizal fungus Glomus mosseae. Plant Mol Biol 51:619–629

    Article  CAS  PubMed  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d'un système radiculaire ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Les mycorhizes : physiologie et génétique, INRA, Paris, pp 217–221

  • van Buuren ML, Maldonado-Mendoza IE, Trieu AT, Blaylock LA, Harrison MJ (1999) Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus versiforme. Mol Plant Microbe Interact 12:171–181

    PubMed  Google Scholar 

  • Woo EJ, Dunwell JM, Goodenough PW, Marvier AC, Pickersgill RW (2000) Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nature Struct Biol 7:1036–40

    Article  CAS  Google Scholar 

  • Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Küster H, Krajinski F (2003) Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant Microbe Interact 16:306–314

    CAS  PubMed  Google Scholar 

  • Wyss P, Mellor RB, Wiemken A (1990) Vesicular-arbuscular mycorrhizas of wild-type soybean and non-nodulating mutants with Glomus mosseae contain symbiosis-specific polypeptides (mycorrhizins), immunologically cross-reactive with nodulins. Planta 182:22–26

    CAS  Google Scholar 

  • Zhou F, Zhang Z, Gregersen P, Mikkelsen J, Neergaard E, de Collinge D, Thordal-Christensen H (1998) Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol 117:33–41

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Duc (INRA, Dijon, France) for providing seeds of Medicago truncatula and P. Mann and V. Monfort for technical assistance. L.B. was supported by an INRA/Conseil de Bourgogne grant. The research was performed within the framework of the EU-QoL project MEDICAGO (QLG2-CT-2000-00676), an INRA Action Transversale Structurante (Project no.°65) and a Max Planck Institute visiting professorship to V.G.-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gianinazzi-Pearson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brechenmacher, L., Weidmann, S., van Tuinen, D. et al. Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions. Mycorrhiza 14, 253–262 (2004). https://doi.org/10.1007/s00572-003-0263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-003-0263-4

Keywords

Navigation