Skip to main content
Log in

Characterisation of demoulding parameters in micro-injection moulding

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Condition monitoring of micro injection moulding is an effective way of understanding the processing effects of variable parameter settings. This paper reports an experimental study that investigates the characteristics of the demoulding behaviour in micro injection moulding (µ-IM) with a focus on the process factors that affect parts’ quality. Using a Cyclic Olefin Copolyme (COC) microfluidics demonstrator, the demoulding performance was studied as a function of four process parameters (melt temperature, mould temperature, holding pressure and injection speed), employing the design of experiment approach. The results provide empirical evidences on the effect that processing parameters have on demoulding conditions in µ-IM, and identifies combinations of parameters that can be used to achieve the optimal processing conditions in regards to demoulding behaviour of micro parts. It was concluded that there was a direct correlation between the applied pressure during part filling, holding phases and the demoulding characteristic factors of the µ-IM cycle such as ejection force, integral and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ABS:

Acrylonitrile butadiene styrene

COC:

Cyclic olefin copolymer

d:

Measuring pin diameter

DOE:

Design of experiments

IM:

Injection moulding

OA:

Orthogonal array

PC:

Polycarbonate

PVT:

Pressure volume temperature

Fe :

Demoulding force

\( {\text{F}}_{{\rm max} }^{\text{e}} \) :

Maximum demoulding force

\( {\text{F}}_{\text{work}}^{\text{e}} \) :

Demoulding force work

\( {\text{F}}_{\text{rate}}^{\text{e}} \) :

Demoulding force rate

Ph :

Holding pressure

S/N:

Signal to noise ratio

SVR :

Surface to volume ratio

t:

Time

Tb :

Melt/barrel temperature

th :

Holding pressure time

Tm :

Mould/tool temperature

Tg :

Glass transition temperature

Vi :

Injection speed

Δt :

Time step of data acquisition system

δ:

Relative effect

σ:

Standard deviation

μ-IM:

Micro-injection moulding

References

  • Chen SC, Chang Y, Chang TH, Chien RD (2008) Influence of using pulsed cooling for mold temperature control on microgroove duplication accuracy and warpage of the Blu-ray disc. Int Commun Heat Mass Transfer 35(2):130–138

    Article  Google Scholar 

  • Chen SC, Chang Y, Chang YP, Chen YC, Tseng CY (2009a) Effect of cavity surface coating on mold temperature variation and the quality of injection molded parts. Int Commun Heat Mass Transfer 36(10):1030–1035

    Article  Google Scholar 

  • Chen SC, Wang YC, Liu SC, Cin JC (2009b) Mold temperature variation for assisting micro-molding of DVD micro-featured substrate and dummy using pulsed cooling. Sens Actuators A 151(1):87–93

    Article  Google Scholar 

  • Chen CS, Chen SC, Liao WH, Chien RD, Lin SH (2010) Micro injection molding of a micro-fluidic platform. Int Commun Heat Mass Transfer 37(9):1290–1294

    Article  MATH  Google Scholar 

  • Chen SC, Chang JA, Hsu WY, Sung W, Huang SW (2011) Improvement of replication accuracy of micro-featured molding using gas-assisted heating for mold surface. Microelectron Eng 88(7):1594–1600

    Article  Google Scholar 

  • Delaunay D, Le Bot P, Fulchiron R, Luye JF, Regnier G (2000) Nature of contact between polymer and mold in injection molding. Part II: influence of mold deflection on pressure history and shrinkage. Polym Eng Sci 40(7):1692–1700

    Article  Google Scholar 

  • Dhouib K, Malek CK, Pfleging W, Gauthier-Manuel B, Duffait R, Thuillier G, Ferrigno R, Jacquamet L, Ohana J, Ferrer JL, Theobald-Dietrich A, Giege R, Lorbera B, Sauter C (2009) Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. Lab Chip 9(10):1412–1421

    Article  Google Scholar 

  • Griffiths CA, Dimov SS, Brousseau EB, Chouquet C, Gavillet J, Bigot S (2009) Investigation of surface treatment effects in micro-injection-moulding. Int J Adv Manuf Technol 47(1–4):99–110

    Google Scholar 

  • Griffiths CA, Dimov SS, Scholz S, Tosello G (2011) Process factors influence on cavity pressure behaviour in micro-injection moulding. ASME Trans J Manuf Sci Eng 133(3):031007

    Article  Google Scholar 

  • Hansen HN, Hocken R, Tosello G (2011) Replication of micro/nano geometries. Ann CIRP (International Academy for Production Engineering) 60(2):695–714

  • Kim SK, Choi SJ, Lee KH, Kim DJ, Yoo YE (2010) Observation of instabilities in flow front during micro injection molding process. Polym Eng Sci 50(7):1377–1381

    Article  Google Scholar 

  • Leo V, Cuvelliez Ch (1996) The effect of the packing parameters, gate geometry, and mold elasticity on the final dimensions of a molded part. Polym Eng Sci 36(15):1961–1971

    Article  Google Scholar 

  • Lin HY, Chang CH, Young WB (2010) Experimental and analytical study on filling of nano structures in micro injection molding. Int Commun Heat Mass Transfer 37(10):1477–1486

    Article  Google Scholar 

  • Lucchetta G, Bariani PF (2010) Sustainable design of injection moulded parts by material intensity reduction. CIRP Ann Manuf Technol 59(1):33–36

    Article  Google Scholar 

  • Montgomery D (2004) Design and analysis of experiments, 6th edn. Wiley, ISBN: 047148735X, pp 1–450

  • Ogilvie RG, Sieben VJ, Floquet CFA, Zmijan R, Mowlem MC, Morgan H (2010) Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. J Micromech Microeng 20(6):065016–065024

    Article  Google Scholar 

  • Ong NS, Koh YH, Fu YQ (2002) Micro lens array produced using hot embossing process. Microelectron Eng 60(3–4):365–379

    Article  Google Scholar 

  • Panchal RR, Kazmer DO (2010) In-situ shrinkage sensor for injection molding. J Manuf Sci Eng 132(6):064503–064509

    Article  Google Scholar 

  • Schütte J, Freudigmann C, Benz K, Jan Bottger Gebhardt R, Stelzle M (2010) A method for patterned in situ biofunctionalization in injection-molded microfluidic devices. Julia Lab Chip 10:2551–2558

    Article  Google Scholar 

  • Shen C, Wang L, Li Q (2007) Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. J Mater Process Technol 183(2–3):412–418

    Article  Google Scholar 

  • Topas Advanced Polymers GmbH (Frankfurt am Main, Germany) (2006) TOPAS cyclic olefin copolymers (COC)—product brochure. http://www.topas.com/ (Accessed Dec 2013)

  • Zhang HL, Ong NS, Lam YC (2008) Experimental investigation of key parameters on the effects of cavity surface roughness in microinjection molding. Polym Eng Sci 48(3):490–495

    Article  Google Scholar 

Download references

Acknowledgments

The research reported in this paper was funded by the FP7 programmes “Converging technologies for micro systems manufacturing” (COTECH, Grant agreement CP-IP 214491-2, http://www.fp7-cotech.eu/), “Integrating European research infrastructures for the micro-nano fabrication of functional structures and devices out of a knowledge-based multimaterials’ repertoire” (EUMINAfab, Grant agreement FP7-226460, http://www.euminafab.eu/), “High throughput integrated technologies for multimaterial functional Micro Components” (HINMICO, Grant agreement 609110, http://www.hinmico.eu/), the UK Engineering and Physical Sciences Research Council (EP/F056745/1) and the MicroBridge programme supported by Welsh Assembly Government and the UK Department for Business, Enterprise and Regulatory Reform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Griffiths.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffiths, C.A., Tosello, G., Dimov, S.S. et al. Characterisation of demoulding parameters in micro-injection moulding. Microsyst Technol 21, 1677–1690 (2015). https://doi.org/10.1007/s00542-014-2269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2269-6

Keywords

Navigation