Skip to main content
Log in

Yaxcopoil-1 and the Chicxulub impact

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

CSDP core Yaxcopoil-1 was drilled to a depth of 1,511 m within the Chicxulub crater. An organic-rich marly limestone near the base of the hole (1,495 to 1,452 m) was deposited in an open marine shelf environment during the latest Cenomanian (uppermost Rotalipora cushmani zone). The overlying sequence of limestones, dolomites and anhydrites (1,495 to 894 m) indicates deposition in various carbonate platform environments (e.g., sabkhas, lagoons). A 100-m-thick suevite breccia (894–794 m) identifies the Chicxulub impact event. Above the suevite breccia is a dolomitic limestone with planktic foraminiferal assemblages indicative of Plummerita hantkeninoides zone CF1, which spans the last 300 ky of the Maastrichtian. An erosional surface 50 cm above the breccia/dolomite contact marks the K/T boundary and a hiatus. Limestones above this contact contain the first Tertiary planktic foraminifera indicative of an upper P. eugubina zone P1a(2) age. Another hiatus 7 cm upsection separates zone P1a(2) and hemipelagic limestones of planktic foraminiferal Zone P1c. Planktic foraminiferal assemblages of Zone Plc to P3b age are present from a depth of 794.04 up to 775 m. The Cretaceous carbonate sequence appears to be autochthonous, with a stratigraphic sequence comparable to late Cretaceous sediments known from outside the Chicxulub crater in northern and southern Yucatan, including the late Cenomanian organic-rich marly limestone. There is no evidence that these sediments represent crater infill due to megablocks sliding into the crater, such as major disruption of sediments, chaotic changes in lithology, overturned or deep dipping megablocks, major mechanical fragmentation, shock or thermal alteration, or ductile deformation. Breccia units that are intercalated in the carbonate platform sequence are intraformational in origin (e.g., dissolution of evaporites) and dykes are rare. Major disturbances of strata by the impact therefore appear to have been confined to within less than 60 km from the proposed impact center. Yaxcopoil-1 may be located outside the collapsed transient crater cavity, either on the upper end of an elevated and tilted horst of the terrace zone, or even outside the annular crater cavity. The Chicxulub site thus records a large impact that predates the K/T boundary impact and mass extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adatte T, Stinnesbeck W, Keller G (l996) Lithostratigraphic and mineralogical correlations of near-K/T boundary clastic sediments in northeastern Mexico: implications for mega-tsunami or sea level changes? Geol Soc Am Spec Pap 307:197–210

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    CAS  Google Scholar 

  • Boggs S (1987) Principles of sedimentology and stratigraphy. Merrill Publ Co, Columbus Toronto London Melbourne, 784 pp

  • Bohor BF, Foord EF, Ganapathy R (1986) Magnesioferrite from the Cretaceous-Tertiary boundary, Caravaca, Spain. Earth Planet Sci Lett 81:57–66

    Article  CAS  Google Scholar 

  • Boynton WV (1991) Chicxulub crater: a possible Cretaceous/Tertiary Boundary impact crater on the Yucatan Peninsula. Geology 19:867–869

    Article  Google Scholar 

  • Brett R (1992) The Cretaceous-Tertiary extinction: a lethal mechanism involving anhydrite target rocks. Geochim Cosmochim Acta 56:3603–3606

    Article  CAS  Google Scholar 

  • Buffler RT, Schlager W et al. (1984) Initial reports Deep-Sea Drilling Project Volume 77: Washington, DC, US Government Printing Office, 747 pp

  • Chamley H (1989) Clay sedimentology. Springer, Berlin Heidelberg New York, 623 pp

  • Deer WA, Howie RA, Zussman J (1993) An introduction to the rock-forming minerals, 2nd edn. Longman Sci & Tech, 696 pp

  • Dressler BO, Sharpton VL, Marín LE (2003) Chicxulub Yax-1 breccias: whence they come? Lunar Planet Sci 34, Abs 1259

  • Dressler BO, Sharpton VL, Morgan J, Buffler R, Moran D, Smit J, Stöffler D, Urrutia J (2003) Investigating a 65-Ma-old smoking gun: deep drilling of the Chicxulub Impact Structure. EOS (Trans Am Geophys Union) 84 (14) pp 125, 130

  • El Goresy A, Chao ECT (1976) Evidence of the impacting body of the Ries crater. The discovery of Fe Cr Ni veinlets below the crater bottom. Earth Planet Sci Lett 31:330–340

    Article  Google Scholar 

  • Ellwood BB, MacDonald WD, Wheeler C, Benoist SL (2003) The K-T boundary in Oman: identified using magnetic susceptibility field measurements with geochemical confirmation. Earth Planet Sci Lett 206:529–540

    Article  CAS  Google Scholar 

  • Espitalié J, Deroo G, Marquis F (1986) La pyrolyse Rock-Eval et ses applications. Partie 3. Revue Inst Fr du Pétrole 41:1

  • Fourcade E, Piccioni L, Escribá J, Rosselo E (1999) Cretaceous stratigraphy and palaeoenvironments of the Southern Petén Basin, Guatemala. Cretaceous Res 20:793–811

    Article  Google Scholar 

  • Haggerty SE (1976) Opaque minerals in terrestrial igneous rocks. MSA Short course notes, vol 4. In: Rumble III D (ed) Oxide minerals, vol 4. Hg101, 300 pp

  • Hay RL (1977) Geology of zeolites in sedimentary rocks MSA Short course notes. In: Mumpton F (ed) Mineralogy and geology of natural zeolites, vol 4, pp 53–64

  • Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo AZ, Jacobson SB, Boynton WV (1991) Chicxulub crater: a possible Cretaceous/Tertiary Boundary impact crater on the Yucatan Peninsula. Geology 19:867–869

    Article  Google Scholar 

  • Hsü KJ, He Q, McKenzie JA, Weissert H, Perch-Nilsen K, Oberhänsli H, Kelts K, LaBrecque J, Tauxe L, Krähenbuhl U, Percival SF Jr, Wright R, Karpoff A, Peterson N, Tucker P, Poore RZ, Gombos A Jr, Pisciotti K, Varman MF Jr, Schreiber E (1982) Mass mortality and its environmental and evolutionary consequences. Science 216:249–256

    Google Scholar 

  • Iijima A (1980) Geology of natural zeolites and zeolitic rocks. Rees LVC (ed) Proceed 5th Int Conf Zeolites, Heyden, pp 103–118

  • Ivanov BA, Badukov D, Yakovlev OI, Gerasimov MV, Dikov YP, Pope K, Ocampo A (1996) Degassing of sedimentary rocks due to Chicxulub Impact: hydrocode and physical simulations. pp 125–140. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous-Tertiary Event and other catastrophes in earth history. Boulder, Colorado, Geol Soc Am Spec Pap 307

  • Izett GA (1991) Tektites in the Cretaceous-Tertiary Boundary rocks on Haiti and their bearing on the Alvarez impact extinction hypothesis. J Geophys Res 96:20879–20905

    Google Scholar 

  • Jarvis I, Carson GA, Cooper MKE, Hart MB, Leary PN, Tocher BA, Horne D, Rosenfeld A (1988) Microfossil assemblages and the Cenomanian-Turonian (Late Cretaceous) oceanic anoxic event. Cretaceous Res 9:3–103

    Google Scholar 

  • Keller G, Adatte T, Stinnesbeck W, Affolter M, Schilli L, Lopez-Oliva JG (2002) Multiple spherule layers in the late Maastrichtian of northeastern Mexico. Geol Soc Am Spec Publ 356:145–161

    Google Scholar 

  • Keller G, Adatte T, Stinnesbeck W, Stüben D, Kramar U, Berner Z, Li L, Von Salis Perich-Nielsen K (1998) The Cretaceous-Tertiary transition on the shallow Saharan Platform of Southern Tunisia. Geobios 30(7):951–975

    Google Scholar 

  • Keller G, Adatte T, Stinnesbeck W, Stueben D, Berner Z (2001) Age, chemo- and biostratigraphy of Haiti spherule-rich deposits: a multi-event K-T scenario. Can J Earth Sci 38:197–227

    Article  Google Scholar 

  • Keller G, Li L, MacLeod N (1995) The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: how catastrophic was the mass extinction? Palaeogeogr Palaeoclimatol Palaeoecol 119:221–254

    Article  Google Scholar 

  • Keller G, MacLeod N, Lyons JB, Officer CB (1993) Is there evidence for Cretaceous/Tertiary boundary-age deep water deposits in the Caribbean and Gulf of Mexico? Geology 21:776–780

    Article  Google Scholar 

  • Keller G, Stinnesbeck W Adatte T, Stueben D (2003a) Multiple impacts across the Cretaceous-Tertiary boundary. Earth Sci Rev 62:327–363

    Article  Google Scholar 

  • Keller G, Stinnesbeck W, Adatte T, Holland B, Stüben D, Harting M, de Leon C, de la Cruz J (2003b) Spherule deposits in Cretaceous-Tertiary boundary sediments in Belize and Guatemala. Geol Soc Lond 160:783–795

    Google Scholar 

  • Kelley PS, Gurov E (2002) Boltysh, another end Cretaceous impact. Science 37:1031–1043

    CAS  Google Scholar 

  • Kenkmann T, Wittmann A, Scherler D, Schmitt RT (2003) Deformation features of the Cretaceous units of the ICDP-Chicxulub drill core Yax-1. Geophys Res Abs 5, 05098, European Geophys Soc 2003

  • Kring DA (1995) The dimensions of the Chicxulub impact crater and impact melt sheet. J Geophys Res 100:16979–16986

    Article  Google Scholar 

  • Kring DA (2000) Impact events and their effects on the origin, evolution, and distribution of life. GSA Today 10:2–5

    Google Scholar 

  • Kübler B (1987) Cristallinite de l’illite, méthods normalisées de préparations, méthodes normalisées de measures. Neuchâtel, Suisse, Cahiers Inst Géologie, Sér ADX 1, 13 pp

  • Kübler B (1997) Concomitant alteration of clay minerals and organic matter during burial diagenesis. In: Paquet H, Clauer N (eds) Soils and sediments. Springer, Berlin Heidelberg New York, pp 327–363

  • Kyte FT, Smit J (1986) Regional variations in spinel composition: an important key to the Cretaceous-Tertiary event. Geology 14:485–487

    CAS  Google Scholar 

  • Lafargue E, Espitalié J, Marquis F, Pillot D (1996) Rock-Eval 6, applications in hydrocarbon exploration, production and soil contamination studies Vinci Technologies, Rock-Eval user’s manual

  • Lopez Ramos E (1973) Estudio geológico de la Peninsula de Yucatan. Bol Assoc Mex Geol Petrol 25 (1–3):23–76

  • Lopez Ramos E (1975) Geological summary of the Yucatan Peninsula, In: AEM Nairn, Stehli FG (eds) The ocean basins and margins, vol 3. The Gulf of Mexico and the Caribbean. Plenum Press, New York, pp 257–282

  • Marín LE, Sharpton VL, Urrutia-Fucugauchi J, Sikora P, Carney C (1994) The “Upper Cretaceous Unit” in the Chicxulub Multi-ring Basin: new age based on planktic foraminiferal assemblage. Lunar Planet Inst, LPI Contrib 825:77

  • Marshall RH (1974) Petrology of subsurface mesozoic rocks of the Yucatán platform, Mexico, MS Thesis, New Orleans, Louisiana, Univ of New Orleans, 97 pp

  • Meyerhoff AA, Lyons JB, Officer CB (1994) Chicxulub structure: a volcanic sequence of late Cretaceous age. Geology 21:3–4

    Article  Google Scholar 

  • Morgan J, Buffler R, Urrutia-Fucugauchi J, Grieve R (2002) Chicxulub: drilling the K-T Impact Crater Instituto de Geofísica, Universidad Nacional Autónoma de México, Serie: Infraestructura Científica y Desarrollo Tecnológico 4, 39 pp

  • Morgan J, Warner M (1999) Chicxulub: the third dimension of a multi-ring impact basin. Geology 27:407–410

    Article  Google Scholar 

  • Odin GS (1975) Les glauconies, PhD Thesis. P et M Curie Univ, Paris, 251 pp

  • Pardo A, Ortiz N, Keller G (1996) Latest Maastrichtian and Cretaceous-Tertiary foraminiferal turnover and environmental changes at Agost Spain. In: MacLeod N, Keller G (eds) Cretaceous-Tertiary boundary mass extinction: biotic and environmental changes. Norton Press, New York, pp 139–171

  • Pierrazo E, Kring DA, Melosh HJ (1998) Hydrocode modeling of Chicxulub as an oblique impact event and the production of climatically active gases. J Geophys Res 103:28607–28625

    Article  Google Scholar 

  • Pope KO (2002) Impact dust not the cause of the Cretaceous-Tertiary mass extinction. Geology 30(2):99–102

    Article  Google Scholar 

  • Pope KO et al. (1997) Energy, volatile production, and climatic effects of the Chicxulub Cretaceous-Tertiary impact. J Geophys Res 102:21645–21654

    Article  CAS  PubMed  Google Scholar 

  • Rebolledo Vieyra M, Urrutia-Fucugauchi J, Marín L, Trejo García A, Sharpton VL, Soler-Arechalde AM (2000) UNAM scientific shallow drilling program of the Chicxulub impact crater. Intl Geol Rev 42:928–940

    Google Scholar 

  • Reed SJB (1996) Electron microprobe analysis and scanning electron microscopy in geology. Cambridge Univ Press, 201 pp

  • Robin E, Boclet D, Bonte Ph, Froget L, Jehanno C, Rocchia R (1991) The stratigraphic distribution of Ni-rich spinels in Cretaceous-Tertiary boundary rocks at El Kef (Tunisia), Caravaca (Spain) and Hole 761 C (Leg 122). Earth Planet Sci Lett 107:715–721

    Article  CAS  Google Scholar 

  • Romein AJT, Smit J (1981) Carbon-oxygen stable isotope stratigraphy of the Cretaceous-Tertiary boundary interval: data from Biarritz section (SW France). Geol Mijnbouw 60:514–544

    Google Scholar 

  • Schackleton NJ, Hall MA (1984) Carbon isotope data from Leg 74 sediments. In: Moore Jr et al. (eds) Initial Reports Deep Sea Drilling Project 74:613–619

  • Schafhauser A, Stinnesbeck W, Holland B, Adatte T, Remane J (2004) Lower Cretaceous pelagic limestones in southern Belize: proto-Caribbean deposits on the southeastern Maya block. Am Assoc Petrol Geol Mem (in press)

    Google Scholar 

  • Schlanger SO, Arthur MA, Jenkyns HC, Scholle PA (l987) The Cenomanian-Turonian anoxic event. Stratigraphy and distribution of organic carbon-rich beds and the marine d13C excursion. In: Brooks J, Fleet JA (eds) Marine petroleum source rocks. Am Assoc Petrol Geol Bull 64:67–87

  • Sharpton VL, Marin LE, Carney C, Lee S, Ryder G, Schuraytz BC, Sikora P, Spudis PS (1996) A model for the Chicxulub impact basin based on evaluation of geophysical data, well logs and drill core samples. pp 55–74. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous-Tertiary event and other catastrophes in earth history. Boulder, Colorado, Geol Soc Am Spec Pap 307

  • Sial AN, Ferreira VP, Toselli AJ, Parada MA, Acenolaza FG, Pimentel MM, Alonso RN (2001) Carbon and oxygen isotope compositions of some Upper Cretaceous-Paleocene sequences in Argentina and Chile. Intl Geol Rev 42(10):892–909

    Google Scholar 

  • Sigurdsson H, Bonté P, Turpin L, Chaussidon M, Metrich N, Steinber M, Pradel P, D’Hondt S (1991) Geochemical constraints on source region of Cretaceous/Tertiary impact glasses. Nature 353:839–842

    Article  CAS  Google Scholar 

  • Sigurdsson H, D’Hondt S, Carey S (l992) The impact of the Cretaceous/Tertiary bolide on evaporite terrane and generation of major sulfuric acid aerosol. Earth Planet Sci Lett 109:543–559

  • Smit J (2004a) Not a single shred... In: The Great Chicxulub debate. Geol Soc Lond, Internet debate: http://www.geolsoc.org.uk/template.cfm?name=NSG2349857238495

  • Smit J (2004b) Chicxulub drilling CSDP, Transition impact to post impact rocks: are controversies real? IODP/ICDP Joint Colloquium (Bremen), IODP-Contributions and Abstracts

  • Smit J, Dressler B, Buffler R, Moran-Zenteno D, Sharpton VL, Stöffler D, Urrutia J, Morgan J (2002) Yaxcopoil-1 drill hole in the Chicxulub impact crater. Geol Soc Am Abstr Progr

  • Smit J, Lustenhouwer WJ, van der Gaast SJ (2004) Transition of the impact to post-impact rocks in the Yaxcopoil-1 drill hole: no evidence for pre-K/T age of the Chicxulub crater. Geophys Res Abs 6, 03184, EGU, Nice

  • Srodon J, Eberl DD (1987) Illite. In: Bailey SW (ed) Micas. Rev Mineral 13, Miner Soc Am Washington, DC, 584 pp

  • Stewart SA, Allen JP (2002) A 20-km-diameter multi-ringed impact structure in the North Sea. Nature 418(1):520–523

    Article  CAS  PubMed  Google Scholar 

  • Stinnesbeck W, Keller G, de la Cruz J, de Leon, C, MacLeod N, Whittacker JE (1997) The Cretaceous-Tertiary boundary in Guatemala—Limestone breccia deposits from the South Peten Basin. Geol Rund 86:686–709

    Article  Google Scholar 

  • Stinnesbeck W, Keller G, Schulte P, Stüben D, Berner Z, Kramar U, Lopez-Oliva JG (2002) The Cretaceous-Tertiary (K/T) boundary transition at Coxquihui, state of Veracruz, Mexico: evidence for an early Danian impact event? J South Am Earth Sci, pp 497–509

  • Stinnesbeck W, Schulte P, Lindenmaier F, Adatte T, Affolter M, Schilli L, Keller G, Stüben D, Berner Z, Kramar U, Lopez-Oliva JG (2001) Late Maastrichtian age of spherule deposits in northeastern Mexico: implication for Chicxulub scenario. Can J Earth Sci 38:229–238

    Article  Google Scholar 

  • Stöffler D, Hecht T, Kenkmann RT, Schmitt T, Wittmann A (2003) Properties, classification, and genetic interpretation of the allochthonous impact formations of the ICDP Chicxulub drill core Yax-1. Geophys Res Abs 5, Nr 07237

  • Stüben D, Kramar U, Berner Z, Eckhardt D, Stinnesbeck W, Keller G, Adatte T, Heide K (2002a) Two anomalies of platinum group elements above the Cretaceous-Tertiary boundary at Beloc, Haiti: geochemical context and consequences for the impact scenario. Geol Soc Am Spec Pap 356:163–188

    Google Scholar 

  • Stüben D, Kramar U, Berner Z, Stinnesbeck W, Keller G, Adatte T (2002b) Trace elements, stable isotopes, and clay mineralogy of the Elles II K/T boundary section in Tunisia: Indications for sea level fluctuations and primary productivity. Palaeogeogr Palaeoclimatol Palaeoecol 178(3–4):321–345

  • Swisher CC, Grajales-Nishimura JM, Montanari A, Margolis SV, Claeys P, Alvarez W, Renne P, Cedillo-Pardo E, Maurasse FJ-M, Curtis GH, Smit J, Williams MO (1992) Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites. Science 257:954–958

    CAS  Google Scholar 

  • Urrutia-Fucugauchi J, Marín L, Trejo-García A (1996) UNAM Scientific drilling program of Chicxulub impact structure—evidence for a 300 kilometre crater diameter. Geophys Res Lett 23(13):1565–1568

    Article  Google Scholar 

  • Urrutia-Fucugauchi J, Morán-Zenteno D, Sharpton V, Buffler R, Stöffler D, Smit J (2001) The Chicxulub Scientific Drilling Project Instituto de Geofísica, Universidad Nacional Autónoma de México, Serie: Infraestructura Científica y Desarrollo Tecnológico 3, 45 pp

  • Utada M (2001) Zeolites in hydrothermally altered rocks. In: Bish DL, Ming DW (ed) Natural zeolites. Rev Mineral Geochem 45, Mineral Soc Am Washington, DC, 654 pp

  • Ward W, Keller G, Stinnesbeck W, Adatte T (1995) Yucatan subsurface revisited: implications and constraints for the Chicxulub meteor impact. Geology 23:873–876

    Article  Google Scholar 

  • Welton EJ (l984) The AAPG methods in exploration series, 4, 237 pp

  • Wittmann A, Kenkmann T, Schmitt RT, Stöffler D (2003) Clastic polymict dikes in the “megablock” sequence of the ICDP-Chicxulub drill core Yax-1. Geophys Res Abstr, vol 5, Nr 05223, Eur Geophys Soc

  • Worzel JL, Bryant W et al. (1973) Initial Reports of the Deep Sea Drilling Project, vol 10, Washington, DC, US Government Printing Office, 747 pp

Download references

Acknowledgements

We gratefully acknowledge access to the Yaxcopoil-1 core and logistic support during on site core analysis by the Instituto de Geofísica of the Universidad Nacional Autónoma de México.

This study has benefited from critical comments and suggestions by reviewer Paul Wignall and from discussions with A. Schafhauser, M. Caron, J.G. Lopez-Oliva, O. Morton and J. Urrutia-Fucugauchi. We thank M. Dadras (Institut de Microtechnique, Neuchâtel University, Switzerland for ESEM-EDX analyses. Research was supported by the German Science Foundation grants STI 128/7-1 to 3 (WS), and STU 169/10-1 to 3 (DS), the US NSF grant EAR-0207407 (GK), and the Swiss National Fund No. 8220-028367 (TA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Stinnesbeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stinnesbeck, W., Keller, G., Adatte, T. et al. Yaxcopoil-1 and the Chicxulub impact. Int J Earth Sci (Geol Rundsch) 93, 1042–1065 (2004). https://doi.org/10.1007/s00531-004-0431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-004-0431-6

Keywords

Navigation