Skip to main content
Log in

Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior of global classical solutions to hydrodynamical systems modeling the nematic liquid crystal flows under kinematic transports for molecules of different shapes. The coupling system consists of Navier–Stokes equations and kinematic transport equations for the molecular orientations. We prove the convergence of global solutions to single steady states as time tends to infinity as well as estimates on the convergence rate both in 2D for arbitrary regular initial data and in 3D for certain particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cavaterra, C., Rocca, E.: On a 3D isothermal model for nematic liquid crystals accounting for stretching terms. Preprint arXiv:1107.3947v1, 1–14 (2011)

  2. Coutand D., Shkoller S.: Well-posedness of the full Ericksen–Leslie model of nematic liquid crystals. C. R. Acad. Sci. Paris Ser. I Math. 333(10), 919–924 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Gennes P.G., Prost J.: The Physics of Liquid Crystals. Oxford Science Publications, Oxford (1993)

    Google Scholar 

  4. Ericksen J.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 22–34 (1961)

    Article  MathSciNet  Google Scholar 

  5. Ericksen J.: Continuum theory of nematic liquid crystals. Res. Mech. 21, 381–392 (1987)

    MathSciNet  Google Scholar 

  6. Ericksen J.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113, 97–120 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feireisl E., Takáč P.: Long-time stabilization of solutions to the Ginzburg–Landau equations of superconductivity. Monatsh. Math. 133, 197–221 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grasselli, M., Wu, H.: Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow. ZAMP (2011). doi:10.1007/s00033-011-0157-9

  9. Gurtin M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  10. Haraux A., Jendoubi M.A.: Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity. Asymptot. Anal. 26, 21–36 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Hardt R., Kinderlehrer D.: Mathematical Questions of Liquid Crystal Theory. The IMA Volumes in Mathematics and its Applications, vol. 5. Springer, New York (1987)

    Google Scholar 

  12. Huang, S.-Z.: Gradient Inequalities, with Applications to Asymptotic Behavior and Stability of Gradient-Like Systems. Mathematical Surveys and Monographs no. 126. AMS (2006)

  13. Hyon Y., Kwak D.-Y., Liu C.: Energetic variational approach in complex fluids: Maximum dissipation principle. Discret. Contin. Dyn. Syst. 26(4), 1291–1304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeffery G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. 102, 102–161 (1922)

    Google Scholar 

  15. Jendoubi M.A.: A simple unified approach to some convergence theorem of L. Simon. J. Funct. Anal 153, 187–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaniel S., Shinbrot M.: Smoothness of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal 24, 302–324 (1967)

    MathSciNet  MATH  Google Scholar 

  17. Larson R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, Oxford (1995)

    Google Scholar 

  18. Leslie F.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leslie, F: Theory of flow phenomenum in liquid crystals. In: Brown, G. (ed.) Advances in Liquid Crystals, vol. 4, pp. 1–83. Academic Press, New York (1979)

  20. Lin F.-H., Du Q.: Ginzburg–Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28, 1265–1293 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin F.-H., Liu C.: Nonparabolic dissipative system modeling the flow of liquid crystals. Commun. Pure Appl. Math. XLVIII, 501–537 (1995)

    Article  MathSciNet  Google Scholar 

  22. Lin F.-H., Liu C.: Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Discret. Contin. Dyn. Syst. 2, 1–23 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Lin F.-H., Liu C.: Existence of solutions for the Ericksen–Leslie system. Arch. Ration. Mech. Anal. 154(2), 135–156 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu C., Walkington N.J.: An Eulerian description of fluids containing visco-hyperelastic particles. Arch. Ration. Mech. Anal. 159, 229–252 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin P., Liu C., Zhang H.: An energy law preserving C 0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys. 227(2), 1411–1427 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu C., Shen J., Yang X.: Dynamics of defect motion in nematic liquid crystal flow: modeling and numerical simulation. Commun. Comput. Phys. 2, 1184–1198 (2007)

    MATH  Google Scholar 

  27. Ł ojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels, Colloque Internationaux du C.N.R.S., 117, Les équations aux dérivées partielles, pp. 87–89 (1963)

  28. Ł ojasiewicz, S.: Ensembles semi-analytiques. I.H.E.S., Bures-sur-Yvette (1965)

  29. Rybka P., Hoffmann K.-H.: Convergence of solutions to Cahn–Hilliard equation. Commun. Part. Differ. Equ. 24, 1055–1077 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Serrin J.: On the interior of weak solutions of Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  31. Simon L.: Asymptotics for a class of nonlinear evolution equation with applications to geometric problems. Ann. Math. 118, 525–571 (1983)

    Article  MATH  Google Scholar 

  32. Sun H., Liu C.: On energetic variational approaches in modeling the nematic liquid crystal flows. Discret. Contin. Dyn. Syst. 23(1&2), 455–475 (2009)

    MATH  Google Scholar 

  33. Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia (1983)

  34. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. AMS (2001)

  35. Wu H.: Convergence to equilibrium for a Cahn–Hilliard model with the Wentzell boundary condition. Asymptot. Anal. 54, 71–92 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Wu H.: Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discret. Contin. Dyn. Syst. 26(1), 379–396 (2010)

    Article  MATH  Google Scholar 

  37. Wu H., Grasselli M., Zheng S.: Convergence to equilibrium for a parabolic-hyperbolic phase-field system with Neumann boundary conditions. Math. Model. Methods Appl. Sci. 17, 1–29 (2007)

    Article  MathSciNet  Google Scholar 

  38. Zheng S.: Nonlinear Evolution Equations. Pitman Series Monographs and Survey in Pure and Applied Mathematics 133. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Xu.

Additional information

Communicated by F. H. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Xu, X. & Liu, C. Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties. Calc. Var. 45, 319–345 (2012). https://doi.org/10.1007/s00526-011-0460-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0460-5

Mathematics Subject Classification (2000)

Navigation