Skip to main content

Advertisement

Log in

Diagnostic accuracy of lipopolysaccharide-binding protein for predicting bacteremia/clinical sepsis in children with febrile neutropenia: comparison with interleukin-6, procalcitonin, and C-reactive protein

  • Original Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Purpose

In febrile neutropenia (FN), no reliable marker has been identified to discriminate between severe infection and other causes of fever early in the clinical course. Since lipopolysaccharide-binding protein (LBP) has proven to be an accurate biomarker of bacteremia/clinical sepsis in critically ill non-immunocompromised infants and children, we performed a prospective study to determine the diagnostic accuracy of LBP in children with FN.

Methods

Concentrations of LBP, procalcitonin (PCT), interleukin-6 (IL-6), and C-reactive protein (CRP) were prospectively measured on two consecutive days in 90 FN episodes experienced by 47 children. Receiver operating characteristic curve analysis was performed for each biomarker to predict bacteremia/clinical sepsis and severe sepsis.

Results

Eighteen of the 90 episodes were classified as bacteremia/clinical sepsis. On both days 1 and 2, all biomarkers had a low to intermediate diagnostic accuracy for sepsis, and no significant differences were found between them (area under the curve (AUC) for LBP, 0.648 and 0.714; for PCT, 0.665 and 0.744; for IL-6, 0.775 and 0.775; and for CRP, 0.695 and 0.828). Comparison of their AUCs to the AUC of maximum body temperature on admission (AUC = 0.668) also failed to show any significant differences. In severe sepsis, however, the best diagnostic accuracies were found for IL-6 and PCT (AUC 0.892 and 0.752, respectively), and these were significantly higher than those for LBP (AUC 0.566) on admission.

Conclusions

On admission and 24 h later, the LBP concentration is less accurate for predicting bacteremia/clinical sepsis compared to IL-6, PCT, and CRP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bodey GP, Buckley M, Sathe YS, Freireich EJ (1966) Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med 64:328–340

    Article  CAS  PubMed  Google Scholar 

  2. Levy MM, Fink MP, Marshall JC et al (2003) SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med 31:1250–1256

    Article  PubMed  Google Scholar 

  3. Goldstein B, Giroir B, Randolph A, the members of the International Consensus Conference on Pediatric Sepsis (2005) International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 6(Suppl 3):2–8

    Article  PubMed  Google Scholar 

  4. Hakim H, Flynn PM, Knapp KM, Srivastava DK, Gaur AH (2009) Etiology and clinical course of febrile neutropenia in children with cancer. J Pediatr Hematol Oncol 31:623–629

    Article  PubMed  Google Scholar 

  5. Phillips B, Wade R, Stewart LA, Sutton AJ (2010) Systematic review and meta-analysis of the discriminatory performance of risk prediction rules in febrile neutropenic episodes in children and young people. Eur J Cancer 46:2950–2964

    Article  PubMed  Google Scholar 

  6. Phillips B, Selwood K, Lane SM et al (2007) Variation in policies for the management of febrile neutropenia in United Kingdom Children's Cancer Study Group centres. Arch Dis Child 92:495–498

    Article  PubMed  Google Scholar 

  7. Boragina M, Patel H (2007) Management of febrile neutropenia in pediatric oncology patients: a Canadian survey. Pediatr Blood Cancer 48:521–526

    Article  PubMed  Google Scholar 

  8. Sakr Y, Sponholz C, Tuche F et al (2008) The role of procalcitonin in febrile neutropenic patients: review of literature. Infection 36:396–407

    Article  CAS  PubMed  Google Scholar 

  9. Phillips RS, Wade R, Lehrnbecher T et al (2012) Systematic review and meta-analysis of the value of initial biomarkers in predicting adverse outcome in febrile neutropenic episodes in children and young people with cancer. BMC Med 10:6. doi:10.1186/1741-7015-10-6

    Article  CAS  PubMed  Google Scholar 

  10. Pavcnik Arnol M, Hojker S, Derganc M (2004) Lipopolysaccharide-binding protein in critically ill neonates and children with suspected infection: comparison with procalcitonin, interleukin-6, and C-reactive protein. Intensive Care Med 30:1454–1460

    Article  PubMed  Google Scholar 

  11. Groselj-Grenc M, Ihan A, Pavcnik-Arnol M et al (2009) Neutrophil and monocyte CD64 indexes, lipopolysaccharide-binding protein, procalcitonin and C-reactive protein in sepsis of critically ill neonates and children. Intensive Care Med 35:1950–1958

    Article  CAS  PubMed  Google Scholar 

  12. Oude Nijhuis CSM, Vellenga E, Daenen SMGJ et al (2003) Lipopolysaccharide-binding protein: a possible diagnostic marker for Gram-negative bacteremia in neutropenic cancer patients. Intensive Care Med 29:2157–2161

    Article  PubMed  Google Scholar 

  13. Zweigner J, Schumann RR, Wener JR (2006) The role of lipopolysaccharide binding protein in modulating the innate immune response. Microbes Infect 8:946–952

    Article  CAS  PubMed  Google Scholar 

  14. Triantafilou M, Triantafilou K (2002) Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 23:301–304

    Article  CAS  PubMed  Google Scholar 

  15. Arditi M, Zhou J, Dorio R et al (1993) Endotoxin-mediated endothelial cell injury and activation: role of soluble CD14. Infect Immun 61:3149–3156

    CAS  PubMed  Google Scholar 

  16. Faure E, Equils O, Sieling PA (2000) Bacterial lipopolysaccharide activates NF-kappaB trough toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 275:11058–11063

    Article  CAS  PubMed  Google Scholar 

  17. Blairon L, Wittebole X, Laerre PF (2003) Lipopolysaccharide-binding protein serum levels in patients with severe sepsis due to Gram-positive and fungal infections. J Infect Dis 187:287–291

    Article  PubMed  Google Scholar 

  18. Ubenauf KM, Krueger M, Henneke P, Benrer R (2007) Lipopolysaccharide binding protein is a potential marker for invasive bacterial infections in children. Pediatr Infect Dis J 26:159–162

    Article  PubMed  Google Scholar 

  19. Pavare J, Grope I, Kalnins I, Gardovska D (2010) High-mobility group box-1 protein, lipopolysaccharide-binding protein, interleukin-6 and C-reactive protein in children with community acquired infections and bacteremia: a prospective study. BMC Infect Dis 10:1–9

    Article  Google Scholar 

  20. Garner JS, Jarvis WR, Emori TG et al (1988) CDC definitions for nosocomial infections. Am J Hospital Infect 16:128–140

    CAS  Google Scholar 

  21. Buchheidt D, Böhme A, Cornely OA et al (2001) Dokumentierte Infektionen bei Neutropenie-Empfehlungen zu Diagnostik und Therapie. Dtsch Med Wochenschr 126:1085–1090

    Article  CAS  PubMed  Google Scholar 

  22. Buchheidt D, Böhme A, Cornely OA et al (2003) Diagnosis and treatment of documented infections in neutropenic patients—recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol 82(Suppl 2):S127–S132

    Article  PubMed  Google Scholar 

  23. De Pauw B, Walsh TJ, Donnelly JP et al (2008) Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 46:1813–1821

    Article  PubMed  Google Scholar 

  24. Penel N, Fournier C, Clisant S, N'Guyen M (2004) Causes of fever and value of C-reactive protein and procalcitonin in differentiating infections from paraneoplastic fever. Support Care Cancer 12:593–598

    Article  PubMed  Google Scholar 

  25. Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843

    CAS  PubMed  Google Scholar 

  26. Anisimova NLU, Gromova EG, Kuznetsova LS, Kiselevski MV (2011) Prognostic value of lipopolysaccharide and lipopolysaccharide-binding protein serum levels in cancer patients with sepsis. Zh Mikrobiol Epidemiol Immunobiol 2:82–84

    PubMed  Google Scholar 

  27. Carcillo JA (2006) Searching for the etiology of systemic inflammatory response syndrome: is SIRS occult endotoxemia? Intensive Care Med 32:181–184

    Article  PubMed  Google Scholar 

  28. Pavcnik Arnol M, Hojker S, Derganc M (2007) Lipopolysaccharide-binding protein, lipopolysaccharide, and soluble CD14 in sepsis of critically ill neonates and children. Intensive Care Med 33:1025–1032

    Article  CAS  PubMed  Google Scholar 

  29. Meynaar IA, Droog W, Batstra M et al (2011) In critically ill patients, serum procalcitonin is more useful in differentiating between sepsis and SIRS than CRP, IL-6, or LBP. Crit Care Res Pract 2011:594645. doi:10.1155/2011/594645

    PubMed  Google Scholar 

  30. Kitanovski L, Jazbec J, Hojker S et al (2006) Diagnostic accuracy of procalcitonin and interleukin-6 values for predicting bacteremia and clinical sepsis in febrile neutropenic children with cancer. Eur J Clin Microbiol Infect Dis 25:413–415

    Article  CAS  PubMed  Google Scholar 

  31. Lin SG, Hou TY, Huang DH et al (2012) Role of procalcitonin in the diagnosis of severe infection in pediatric patients with fever and neutropenia—a systemic review and meta-analysis. Pediatr Infect Dis J 31(10):e182–e188. doi:10.1097/INF.0b013e31825da45d

    PubMed  Google Scholar 

  32. Svaldi M, Hirber J, Lanthaler AI et al (2001) Procalcitonin-reduced sensitivity and specificity in heavily leucopenic and immunosupressed patients. Br J Hematol 115:53–57

    Article  CAS  Google Scholar 

  33. Povoa P, Souza-Danta VC, Soares M, Salluh JIF (2011) C-reactive protein in critically ill cancer patients with sepsis: influence of neutropenia. Crit Care 15(3):R129. doi:10.1186/cc10242

    Article  PubMed  Google Scholar 

  34. Secmeer G, Devrim I, Kara A et al (2007) Role of procalcitonin and CRP in differentiating a stable from a deteriorating clinical course in pediatric febrile neutropenia. J Pediatr Hematol Oncol 29:107–111

    Article  CAS  PubMed  Google Scholar 

  35. Santolaya ME, Alvarez AM, Aviles CL et al (2008) Predictors of severe sepsis not clinically apparent during the first twenty-four hours of hospitalization in children with cancer, neutropenia, and fever: a prospective, multicenter trial. Pediatr Infect Dis J 27:538–543

    Article  PubMed  Google Scholar 

  36. Santolaya ME, Cofre J, Beresi V (1994) C reactive protein: a valuable aid for the management of febrile children with cancer and neutropenia. Clin Infect Dis 18:589–595

    Article  CAS  PubMed  Google Scholar 

  37. Heney D, Lewis IJ, Evans SW et al (1992) Interleukin-6 and its relationship to C-reactive protein and fever in children with febrile neutropenia. J Infect Dis 165:886–890

    Article  CAS  PubMed  Google Scholar 

  38. Meckler G, Lindemulder S (2009) Fever and neutropenia in pediatric patients with cancer. Emerg Med Clin North Am 27:525–544

    Article  PubMed  Google Scholar 

  39. Santolaya ME, Alvarez AM, Becker A et al (2001) Prospective, multicenter evaluation of risk factors associated with invasive bacterial infection in children with cancer, neutropenia and fever. J Clin Oncol 19:3415–3421

    CAS  PubMed  Google Scholar 

  40. Hatzistilanou M, Rekliti A, Athanassiadou F, Catriu D (2010) Procalcitonin as an early marker of bacterial infection in neutropenic febrile children with acute lymphoblastic leukemia. Inflamm Res 59:339–347

    Article  Google Scholar 

  41. Nuutila J, Hohenthal U, Laitinen I et al (2007) Simultaneous quantitative analysis of FcgammaRI (CD64) expression on neutrophils and monocytes: a new, improved way to detect infections. J Immunol Methods 328:189–200

    Article  CAS  PubMed  Google Scholar 

  42. Groselj-Grenc M, Ihan A, Derganc M (2008) Neutrophil and monocyte CD64 and CD163 expression in critically ill neonates and children with sepsis: comparison of fluorescence intensities and calculated indexes. Mediat Inflamm 2008:202646. doi:10.1155/2008/202646

    Article  Google Scholar 

  43. Gericke GH, Ericson SG, Pan L, Mills LE, Guyre PM, Ely P (1995) Mature polymorphonuclear leukocytes express high-affinity receptors for IgG (Fc gama RI) after stimulation with granulocyte colony-stimulating factor (G-CSF). J Leukoc Biol 57:455–461

    CAS  PubMed  Google Scholar 

  44. Kwofie L, Rapoport BL, Fickl H et al (2012) Evaluation of circulating soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) to predict risk profile, response to antimicrobial therapy, and development of complications in patients with chemotherapy-associated febrile neutropenia: a pilot study. Ann Hematol 91:605–611

    Article  CAS  PubMed  Google Scholar 

  45. Miedema KG, de Bont ES, Elferink RF et al (2011) The diagnostic value of CRP, IL-8, PCT, and sTREM-1 in the detection of bacterial infections in pediatric oncology patients with febrile neutropenia. Support Care Cancer 19:1593–1600

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Slovenian Research Agency, grants no. J3-2184 and J3-4220. The authors thank Dr. Dianne Jones for language review.

Conflict of interest

All authors declare no conflict of interest. Authors have full control of all primary data and agree to allow the journal to review their data if requested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidija Kitanovski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitanovski, L., Jazbec, J., Hojker, S. et al. Diagnostic accuracy of lipopolysaccharide-binding protein for predicting bacteremia/clinical sepsis in children with febrile neutropenia: comparison with interleukin-6, procalcitonin, and C-reactive protein. Support Care Cancer 22, 269–277 (2014). https://doi.org/10.1007/s00520-013-1978-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-013-1978-1

Keywords

Navigation