Skip to main content
Log in

Stem radial increment of forest and savanna ecotypes of a Neotropical tree: relationships with climate, phenology, and water potential

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate differences in stem radial increment between the savanna and forest ecotypes of Plathymenia reticulata at an ecotonal site. It was hypothesised that even under similar climate conditions, the savanna and forest ecotypes exhibit differences in radial growth, phenology, and water status because of differences in wood density. Stem radial increment, phenology, and water potential were evaluated monthly. The radial increment was positively related to precipitation and displayed no increment (or decrement) in months with low rainfall. A negative relationship was observed between radial growth and wood density, with the forest ecotype exhibiting a higher radial increment than the savanna ecotype. Midday water potential (ΨMD) was also negatively related to wood density. Compared to the forest ecotype, the savanna ecotype displayed lower values of ΨMD during the dry season and started leaf senescence earlier at the beginning of the dry season. Leaf fall improved water status, resulting in leaf flushing even without a significant increase in rainfall. Radial growth significantly increased only after the crown leaf cover was completed. The results confirmed the importance of wood density in the differential responses of ecotypes in relation to growth, water status, and phenology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Borchert R (1991) Growth periodicity and dormancy. In: Raghvendra AS (ed) Physiology of trees. Wiley, New York, pp 221–245

    Google Scholar 

  • Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75(5):1437–1449. doi:10.2307/1937467

  • Borchert R (1998) Responses of tropical trees to rainfall seasonality and its long-term changes. Clim Change 39(2–3):381–393. doi:10.1023/A:1005383020063

    Article  Google Scholar 

  • Borchert R (1999) Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. Iawa J 20(3):239–247

    Google Scholar 

  • Brienen RJW, Lebrija-Trejos E, Zuidema P, Martínez-Ramos M (2010) Climate-growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Glob Change Biol 16:2001–2012. doi:10.1111/j.1365-2486.2009.02059.x

    Article  Google Scholar 

  • Bucci SJ, Goldstein G, Meinzer FC, Scholz FG, Franco AC, Bustamante M (2004) Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiol 24(8):891–899. doi:10.1093/treephys/24.8.891

    Article  PubMed  CAS  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanni AE (2009) Towards a wordwide wood economics spectrum. Ecol Lett 12:351–366. doi:10.1111/j.1461-0248.2008.01285.x

    Article  PubMed  Google Scholar 

  • Couralet C, Sterck FJ, Sass-Klaassen U, Van Acker J, Beeckman H (2010) Species-specific growth responses to climate variations in understory trees of a central African rain forest. Biotropica 42(4):503–511. doi:10.1111/j.1744-7429.2009.00613.x

    Article  Google Scholar 

  • Daudet FA, Améglio T, Cochard H, Archilla O, Lacointe A (2005) Experimental analysis of the role of water and carbon in tree stem diameter variations. J Exp Bot 56(409):135–144. doi:10.1093/jxb/eri026

    PubMed  CAS  Google Scholar 

  • Elliott S, Baker PJ, Borchert R (2006) Leaf flushing injury during the dry season: the paradox of Asian monsoon forests. Global Ecol Biogeogr 15:248–257. doi:10.1111/j.1466-822x.2006.00213.x

    Google Scholar 

  • EMBRAPA (1999) Sistema Brasileiro de Classificação de Solos. Centro Nacional de Pesquisa de Solos, Rio de Janeiro

    Google Scholar 

  • Fiaschi P, Pirani JR (2009) Review of plant biogeographic studies in Brazil. J Syst Evol 47(5):477–496. doi:10.1111/j.1759-6831.2009.00046.x

    Article  Google Scholar 

  • Fournier LA (1974) Quantitative method for measuring phenological characteristics of trees. Turrialba 24(4):422–423

    Google Scholar 

  • Franco AC, Bustamante M, Caldas LS, Goldstein G, Meinzer FC, Kozovits AR, Rundel P, Coradin VTR (2005) Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees Struct Funct 19(3):326–335. doi:10.1007/s00468-004-0394-z

    Article  Google Scholar 

  • Goldstein G, Andrade JL, Meinzer FC, Holbrook NM, Cavelier J, Jackson P, Celis A (1998) Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell Environ 21(4):397–406. doi:10.1046/j.1365-3040.1998.00273.x

    Article  Google Scholar 

  • Goulart MF, Lemos-Filho JP, Lovato MB (2005) Phenological variation within and among populations of Plathymenia reticulata in Brazilian Cerrado, the Atlantic Forest and transitional sites. Ann Bot 96(3):445–455. doi:10.1093/aob/mci193

    Article  PubMed  Google Scholar 

  • Goulart MF, Lovato MB, Barros FV, Valladares F, Lemos-Filho JP (2011) Which extent is plasticity to light involved in the ecotypic differentiation of a tree species from savanna and forest? Biotropica 43(2):1–9. doi:10.1111/j.1744-7429.2011.00760.x

    Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol 4(2):97–115

    Article  Google Scholar 

  • Hoffmann WA, Franco AC (2003) Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts. J Ecol 91:475–484

    Article  Google Scholar 

  • Hoffmann WA, Franco AC, Moreira MZ, Haridasan M (2005) Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees. Funct Ecol 19:932–940

    Article  Google Scholar 

  • Jacobsen AL, Agenbag L, Esler KJ, Pratt RB, Ewers FW, Davis SD (2007) Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa. J Ecol 95(1):171–183. doi:10.1111/j.1365-2745.2006.01186.x

    Article  Google Scholar 

  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Kovach WL (2006) Oriana—circular statistics for Windows, version 2. Kovach Computing Services, Pentraeth, Wales

    Google Scholar 

  • Lacerda DR, Lemos JP, Acedo MDP, Lovato MB (2002) Molecular differentiation of two vicariant neotropical tree species, Plathymenia foliolosa and P. reticulata (Mimosoideae), inferred using RAPD markers. Plant Syst Evol 235(1–4):67–77. doi:10.1007/s00606-002-0227-8

    Article  CAS  Google Scholar 

  • Lemos-Filho JPD, Goulart MF, Lovato MB (2008) Populational approach in ecophysiological studies: the case of Plathymenia reticulata, a tree from Cerrado and Atlantic Forest. Braz J Plant Physiol 20(3):205–216. doi:10.1590/S1677-04202008000300005

    Article  Google Scholar 

  • Marcati CR, Milanez CRD, Machado SR (2008) Seasonal development of secondary xylem and phloem in Schizolobium parahyba (Vell.) Blake (Leguminosae: Caesalpinioideae). Trees Struct Funct 22(1):3–12. doi:10.1007/s00468-007-0173-8

    Article  Google Scholar 

  • Meinzer FC (2003) Functional convergence in plant responses to the environment. Oecologia 134(1):1–11. doi:10.1007/s00442-002-1088-0

    Article  PubMed  Google Scholar 

  • Nimer E (1989) Climatologia do Brasil. IBGE, Rio de Janeiro

    Google Scholar 

  • Nobre CA, Salazar LF, Oyama M, Cardoso M, Sampaio G, Lapola D (2007) Mudanças climáticas e possíveis alterações nos biomas da América do Sul. Ministério do Meio Ambiente-SBF/DCBIO, Brazil

    Google Scholar 

  • Novaes RML, Lemos-Filho JP, Ribeiro RA, Lovato MB (2010) Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion towards northeastern Brazil and southern Cerrados in Eastern Tropical South America. Mol Ecol 19:985–998. doi:10.1111/j.1365-294X.2010.04530.x

    Article  PubMed  Google Scholar 

  • Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic Forest in Southeastern Brazil and the influence of climate. Biotropica 32:793–810

    Google Scholar 

  • Parizzi MG, Salgado-Labouriau ML, Kohler HC (1998) Genesis and environmental history of Lagoa Santa, southeastern Brazil. Holocene 8(3):311–321. doi:10.1191/095968398670195708

    Article  Google Scholar 

  • Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80(3):223–230. doi:10.1006/anbo.1997.0469

    Article  Google Scholar 

  • Rossatto DR, Hoffmann WA, Franco AC (2009) Differences in growth patterns between co-occurring forest and savanna trees affect the forest-savanna boundary. Funct Ecol 23(4):689–698. doi:10.1111/j.1365-2435.2009.01568.x

    Article  Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles-Wilhelm F (2008) Temporal dynamics of stem expansion and contraction in savanna trees: withdrawal and recharge of stored water. Tree Physiol 28(3):469–480. doi:10.1093/treephys/28.3.469

    Article  PubMed  Google Scholar 

  • Silva RP, Santos J, Tribuzy ES, Chambers JQ, Nakamura S, Higuchi N (2002) Diameter increment and growth patterns for individual tree growing in Central Amazon, Brazil. Forest Ecol Manag 166(1–3):295–301. doi:10.1016/S0378-1127(01)00678-8

    Article  Google Scholar 

  • Simon MF, Grether R, Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado neotropical plant diversity hotspot, by in situ evolution of adaptation to fire. Proc Natl Acad Sci USA 106(48):20359–20364. doi:10.1073.pnas.0903410106

    Google Scholar 

  • Stahl C, Burban B, Bompy F, Jolin ZB, Sermage J, Bonal D (2010) Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana. J Trop Ecol 26:393–405. doi:10.1017/s0266467410000155

    Article  Google Scholar 

  • Valencia MS, Vargas JH (1997) Método empírico para estimar la densidad básica en muestras pequeñas de madera. Madera y Bosques 3(1):81–87

    Google Scholar 

  • Warwick MC, Lewis GP (2003) Revision of Plathymenia (Leguminosae-Mimosoideae). Edinb J Bot 60(2):111–119. doi:10.1017/S0960428603000106

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

The authors thank Paulo Botosso, Ary Oliveira-Filho, Fernando Silveira, the reviewers and the editor for their valuable comments; Alistair Hayward and Luis Nogueira for help with English revisions; Bernardo Leopoldo, Renan Novaes, and Thiago Magalhães for help with the fieldwork; and Fernando Silveira, João B. Zonta, Adriano Paglia, and Marcelo Bueno for help with statistical analyses. The Instituto Estatudal de Florestas (IEF-MG) provided research facilities for the fieldwork. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) granted a M.Sc. fellowship to MMT, and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) supported this work and granted research fellowships to EASP and JPLF. We also thank the Fundação de Amparo a Pesquisa de Minas Gerais (FAPEMIG) and the Pro-reitoria de Pesquisa da Universidade Federal de Minas Gerais (PrPq-UFMG) by financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Pires de Lemos Filho.

Additional information

Communicated by A. C. Franco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toledo, M.M., Paiva, E.A.S., Lovato, M.B. et al. Stem radial increment of forest and savanna ecotypes of a Neotropical tree: relationships with climate, phenology, and water potential. Trees 26, 1137–1144 (2012). https://doi.org/10.1007/s00468-012-0690-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0690-y

Keywords

Navigation