Skip to main content
Log in

Transgene stability and dispersal in forest trees

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Transgenics from several forest tree species, carrying a number of commercially important recombinant genes, have been produced, and are undergoing confined field trials in a number of countries. However, there are questions and issues regarding stability of transgene expression and transgene dispersal that need to be addressed in long-lived forest trees. Variation in transgene expression is not uncommon in the primary transformants in plants, and is undesirable as it requires screening a large number of transformants in order to select transgenic lines with acceptable levels of transgene expression. Therefore, the current focus of plant transformation is toward fine tuning of transgene expression and stability in the transgenic forest trees. Although a number of studies have reported a relatively stable transgene expression for several target traits, including herbicide resistance, insect resistance, and lignin modification, there was also some unintended transgene instability in the genetically modified (GM) forest trees. Transgene dispersal from GM trees to feral forest populations and their containment remain important biological and regulatory issues facing commercial release of GM trees. Containment of transgenes must be in place to effectively prevent escape of transgenic pollen, seed, and vegetative propagules in economically important GM forest trees before their commercialization. Therefore, it is important to devise innovative technologies in genetic engineering that lead to genetically stable transgenic trees not only for qualitative traits (herbicide resistance, insect resistance), but also for quantitative traits (accelerated growth, increased height, increased wood density), and also prevent escape of transgenes in the forest trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahuja MR (1987) Somaclonal variation. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. vol 1. Martinus Nijhoff Publishers, Dordrecht, pp 272–285

    Google Scholar 

  • Ahuja MR (1988) Gene transfer in forest trees. In: Hanover JE, Keathley DE (eds) Genetic manipulation of woody plants. Plenum Press, New York, pp 25–41

    Google Scholar 

  • Ahuja MR (1997) Transgenes and genetic instability. In: Klopfenstein NB, Chun WYW, Kim M-S, Ahuja MR (eds) Micropropagation and genetic engineering and molecular genetics of Populus. Technical Report RM-GTR-297, USDA Forest Service, Rocky Mountain Research Station, Fort Collins, pp 90–100

  • Ahuja MR (1998) Somaclonal genetics of forest trees. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer, Dordrecht, pp 105–121

    Google Scholar 

  • Ahuja MR (2000) Genetic engineering in forest trees: state of the art and future perspectives. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants. vol. 1. Kluwer, Dordrecht, pp 31–49

    Google Scholar 

  • Ahuja MR (2001) Recent advances in molecular genetics of forest trees. Euphytica 121:73–195

    Article  Google Scholar 

  • Ahuja MR, Fladung M (1996) Stability and expression of chimeric genes in Populus. In: Ahuja MR, Boerjan W, Neale DB (eds) Somatic cell genetics and Molecular genetics of trees. Kluwer, Dordrecht, pp 89–96

    Google Scholar 

  • Al-Ahmad H, Dwer J, Moloney M, Gressel J (2006) Mitigation of establishment of Brassica napus transgenes in volunteers using a tandem construct containing a selectively unfit gene. Plant Biotecnol J 4:7–21

    Article  CAS  Google Scholar 

  • Allen GC, Spiker S, Thompson WF (2000) Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol Biol 43:361–376

    Article  CAS  PubMed  Google Scholar 

  • Baack EJ (2006) Engineered crops: transgenes go wild. Curr Biol 16:R583–R584

    Article  CAS  PubMed  Google Scholar 

  • Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38:305–350

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Bhat SR, Srinivasan S (2002) Molecular and genetic analysis of transgenic plants: considerations and approaches. Plant Sci 163:673–681

    Article  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Mol Biol 48:297–326

    Article  CAS  Google Scholar 

  • Bishop-Hurley SL, Zubkiewicz RJ, Grace LJ et al (2001) Conifer genetic engineering: transgenic Pinus radiata (D.Don.) and Picea abies (Karst.) plants are resistant to the herbicide Buster. Plant Cell Rep 20:235–243

    Article  CAS  Google Scholar 

  • Boerjan W (2005) Biotechnology and domestication of forest trees. Curr Opin Biotechnol 16:159–166

    Article  CAS  PubMed  Google Scholar 

  • Bradford KJ, Deynze AV, Gutterson N, Parrott W, Strauss SH (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat Biotechnol 23:439–444

    Article  CAS  PubMed  Google Scholar 

  • Brunner AM, Li J, DiFazio SP, Schevchenko O, Montgomery BE, Mohamed R, Wie H, Ma C, Elias AA, Van Wormer K, Strauss SH (2007) Genetic containment of forest plantations. Tree Genet Genomes 3:75–100

    Article  Google Scholar 

  • Burczyk J, DiFazio SP, Adams WT (2004) Gene flow in forest trees: how far do genes really travel? For Genet 11:1–14

    Google Scholar 

  • Burke JM, Gardner KA, Rieseberg LH (2002) The potential for gene flow between cultivated and wild sunflower (Helianthus annuus) in the United States. Am J Bot 89:1550–1552

    Article  Google Scholar 

  • Busov VB, Brunner AM, Meilan R, Filichkin S, Ganio L, Gandhi S, Strauss SH (2005) Genetic transformation: a powerful tool for dissection of adaptive traits in trees. New Phytol 167:9–18

    Article  CAS  PubMed  Google Scholar 

  • Butaye KJM, Goderis IJWM, Wouters PFJ, Pues JMTG, Delauré SL, Boekaert WF, Depicker A, Cammue BPA, De Bolle MFC (2004) Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutant and matrix attachment regions. Plant J 39:440–449

    Article  CAS  PubMed  Google Scholar 

  • Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC (2005) Approaches to minimize variation in transgene expression in plants. Mol Breed 16:79–91

    Article  Google Scholar 

  • Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnol J 1:141–154

    Article  CAS  PubMed  Google Scholar 

  • Cervera M, Piña JA, Juárez J, Navarro L, Peña L (2000) A broad exploration of transgenic citrus: stability of gene expression and phenotype. Theor Appl Genet 100:670–677

    Article  CAS  Google Scholar 

  • Chapman MA, Burke JM (2006) Letting the gene out of the bottle: populations genetics of genetically modified crops. New Phytol 170:429–443

    Article  CAS  PubMed  Google Scholar 

  • Charest PJ, Michel MF (1991) Basics of plant genetic engineering and its potential applications to tree species. Information Report Pl-X-104. Petawawa National Forestry Institute, Forestry Canada, pp 1–48

  • Charity JA, Holland L, Grace LJ, Walter C (2005) Consistent and stable expression of the nptII, uidA and bar genes in transgenic Pinus radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures. Plant Cell Rep 23:606–616

    Article  CAS  PubMed  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Kumar S, Dufourmantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:238–245

    Article  CAS  PubMed  Google Scholar 

  • De Bolle MFC, Butaye MMJ, Couke WJW, Goderis IJWM, Wouters PFJ, van Boxel N, Brockaert WF, Cammue BPA (2003) Analysis of the influence of promoter elements and matrix attachment region on the inter-individal variation of transgene expression in populations of Arabidopsis thaliana. Plant Sci 165:169–179

    Article  CAS  Google Scholar 

  • DiFazio SP, Slavov GT, Burczyk J, Leonardi S, Strauss SH (2004) Gene flow from tree plantations and implications for transgenic risk assessment. In: Walter C, Carson M (eds) Plantation forest biotechnology for the 21st Century. Research Signpost, Trivandrum, pp 405–422

    Google Scholar 

  • Donahue RA, Davis TD, Riemenschneider DF, Michler CH, Carter DR, Marquardt PE, Sankhala D, Haissig BE, Isebrands JG (1994) Growth, photosynthesis, and herbicide tolerance of genetically modified hybrid poplar. Can J For Res 24:2377–2383

    Article  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563

    Article  Google Scholar 

  • Ewald D, Hu J, Yang M (2006) Transgenic forest trees in China. In: Fladung M, Ewald D (eds) Tree transgenesis: recent developments. Springer, Berlin, pp 25–45

    Google Scholar 

  • Fagard M, Vauchert H (2000) (Tans)gene silencing in plants: how many mechanisms? Annu Rev Plant Physiol Plant Mol Biol 51:167–194

    Article  CAS  PubMed  Google Scholar 

  • Farnum P, Lucier A, Meilan R (2007) Ecological and population genetics research imperatives for transgenic trees. Tree Genet Genomes 3:119–133

    Article  Google Scholar 

  • Fillatti JJ, Selmer J, McCown B, Haissig B, Comai L (1987) Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199

    Article  CAS  Google Scholar 

  • Finnegan J, McElroy D (1994) Transgene inactivation: plants fight back. Biotechnology 12:883–888

    Article  Google Scholar 

  • Finstad K, Bonfils AC, Shearer W, Macdonald P (2007) Trees with novel traits in Canada: regulation and related scientific issues. Tree Genet Genomes 3:135–139

    Article  Google Scholar 

  • Fladung M (1999) Gene stability in transgenic aspen (Populus). I. Flanking DNA sequences and T-DNA structure. Mol Gen Genet 260:1097–1103

    Google Scholar 

  • Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation with different chimeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121

    Article  CAS  Google Scholar 

  • Gilbertson L (2003) Cre-lox recombination: cre-active tools for plant biotechnology. Trends Biotechnol 21:550–555

    Article  CAS  PubMed  Google Scholar 

  • Grace LJ, Charity JA, Gresham B, Kay N, Walter C (2005) Insect resistance transgenic Pinus radiata. Plant Cell Rep 24:103–111

    Article  CAS  PubMed  Google Scholar 

  • Gressel J (1999) Tandem constructs preventing the rise of super weeds. Trends Biotechnol 17:361–366

    Article  CAS  PubMed  Google Scholar 

  • Groover AT (2007) Will genomics guide a greener forest biotechnology? Trends Plant Sci 12:234–238

    Article  CAS  PubMed  Google Scholar 

  • Halpin C, Thain SC, Tilston EL, Guiney E, Lapierre C, Hopkin DW (2007) Ecological impacts of trees with modified lignin. Tree Genet Genomes 3:101–110

    Article  Google Scholar 

  • Halweg C, Thompson WF, Spiker S (2005) The Rb7 matrix attachment region increases the likelihood and magnitude of transgene expression in tobacco cells: a flow cytometric study. Plant Cell 17:418–429

    Article  CAS  PubMed  Google Scholar 

  • Hancock JE, Loya WM, Giardina CP, Li L, Chiang VL, Pregitzer KS (2007) Plant growth, biomass partitioning and soil carbon formation in response to altered lignin biosynthesis in Populus tremuloides. New Phytol 173:732–742

    Article  CAS  PubMed  Google Scholar 

  • Harcourt RL, Kyozuka J, Floyd RB, Bateman KS, Tanaka H, Decroocq V, Llewellyn DJ, Zhu X, Peacock WJ, Dennis ES (2000) Insect- and herbicide-resistant transgenic eucalypts. Mol Breed 6:307–315

    Article  CAS  Google Scholar 

  • Hawkins S, Leplé JC, Cornu D, Jouanin L, Pilate G (2003) Stability of transgene expression in poplar: a model forest tree species. Ann For Sci 60:427–438

    Article  Google Scholar 

  • Heinemann JA, Traavik T (2004) Problems in monitoring horizontal gene transfer in field trials of transgenic plants. Nat Biotechnol 22:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Hoenicka H, Fladung M (2006a) Genomic instability in woody plants derived from genetic engineering. In: Fladung M, Ewald D (eds) Transgenesis: recent developments. Springer, Berlin, pp 301–321

    Google Scholar 

  • Hoenicka H, Fladung M (2006b) Biosafety in Populus spp. and other forest trees: from non-native species to taxa derived from traditional breeding and genetic engineering. Trees 20:131–144

    Article  Google Scholar 

  • Hu W-J, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai C-J, Chiang V (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812

    Article  CAS  PubMed  Google Scholar 

  • Jaffe G (2004) Regulating transgenic crops: a comparative analysis of different regulatory processes. Transgenic Res 13:5–19

    Article  CAS  PubMed  Google Scholar 

  • James C (2008) Global status of commercialized Biotech/GM Crops 2008. The International Service for the Acquisition of Agri-biotech Applications (ISAAA Brief # 39), Ithaca, NY. http://www.isaaa.org

  • Jing ZP, Gallardo F, Pascual MB, Sampalo P, Romero J, Torres de Navarra A, Canovas FM (2004) Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol 164:137–145

    Article  CAS  Google Scholar 

  • Käppeli O, Auberson L (1998) How safe is safe enough in plant genetic engineering? Trends Plant Sci 3:276–281

    Article  Google Scholar 

  • Kawaoka A, Mutsanga E, Endo S, Kondo S, Yoshida K, Shinmyo A, Ebinuma H (2003) Ectopic expression of a horseradish peroxidase enhances growth rate and increase oxidative stress in hybrid aspen. Plant Physiol 132:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi A, Watanabe K, Tanaka Y, Kamada H (2008) Recent progress on environmental biosafety assessment of genetically modified trees and floricultural plants in Japan. Plant Biotechnol 25:9–15

    Google Scholar 

  • Kumar S, Fladung M (2001) Controlling transgene integration in plants. Trends Plant Sci 6:156159

    Google Scholar 

  • Kumar S, Fladung M (2002) Transgene integration in aspen: structures of integration sites and mechanisms of T-DNA integration. Plant J 31:543–551

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Fladung M (2004) Stability of transgene expression in aspen. In: Kumar S, Fladung M (eds) Molecular genetics and breeding of forest trees. Food Products Press, Binghamton, pp 293–308

    Google Scholar 

  • Kuparinen A, Schurr F (2007) A flexible modeling framework linking the spatio-temporal dynamics of plant genotypes and populations: applications to gene flow from transgenic forests. Ecol Modell 202:476–486

    Article  Google Scholar 

  • Kuparinen A, Schurr F (2008) Assessing the risk of gene flow from genetically modified trees carrying mitigation transgenes. Biol Invasions 10:281–290

    Article  Google Scholar 

  • Kusaba M (2004) RNA interference in crop plants. Curr Opin Biotechnol 15:139–143

    Article  CAS  PubMed  Google Scholar 

  • Lachance D, Hamel L-P, Pelltier E, Valéro J, Bernier-Cardou M, Chapman K, Van Frankenhuyzen K, Séguin A (2007) Expression of a Bacillus thuringiensis cry1Ab gene in transgenic white spruce and its efficacy against the spruce budworm (Choristoneura fumiferana). Tree Genet Genomes 3:153–167

    Article  Google Scholar 

  • Lännenpää M, Hassinen M, Ranki A, Hölttä-Vuora M, Lemmetyinen J, Keinonnen K, Sopanen T (2005) Prevention of flower development in birch and other plants using a BPFULLI::BARNASE construct. Plant Cell Rep 24:69–78

    Article  PubMed  CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  • Lemmetyinen J, Keinonen K, Sopanen T (2004) Prevention of flowering of a tree, silver birch. Mol Breed 13:243–249

    Article  CAS  Google Scholar 

  • Leple J, Bonadebottino M, Augustin S, Pilate G, Letan VD, Delplanque A, Cornu D, Jouanin L (1995) Toxicity to Chrysomela tremulae (Coleoptera, chrysomelidae) of transgenic poplars expressing a cysteine proteinase-inhibitor. Mol Breed 1:319–328

    Article  CAS  Google Scholar 

  • Li L, Zhou Y, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in tree through multigene cotransformation. Proc Natl Acad Sci USA 100:4939–4944

    Article  CAS  PubMed  Google Scholar 

  • Li J, Brunner AM, Meilan R, Strauss SH (2008a) Stability of transgenes in trees: expression of two reporter genes in poplar over two field seasons. Tree Physiol 29:299–312

    Article  PubMed  CAS  Google Scholar 

  • Li J, Meilan R, Ma C, Barish M, Strauss SH (2008b) Stability of herbicide resistance over eight years of coppice in field-grown, genetically engineered poplars. West J Appl For 23:89–93

    Google Scholar 

  • Li J, Brunner AM, Schevchenko O, Meilan R, Ma C, Skinner JS, Strauss SH (2008c) Efficient and stable transgene suppression via RNAi in field-grown poplars. Transgenic Res 17:679–694

    Article  CAS  PubMed  Google Scholar 

  • Lida W, Yifan H, Jianjun H (2004) Transgenic forest trees for insect resistance. In: Kumar S, Fladung M (eds) Molecular genetics and breeding of forest trees. The Haworth Press, Binghamton, pp 243–261

    Google Scholar 

  • Lu B-R (2003) Transgenic containment by molecular means—is it possible and cost effective? Environ Biosafety Res 2:3–8

    PubMed  Google Scholar 

  • Luo R, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) “GM-gene-deletor”: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or GRF recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–274

    Article  CAS  PubMed  Google Scholar 

  • Mansoor S, Amin I, Hussain M, Zafar Y, Briddon RW (2006) Engineering novel traits in plants through RNA interference. Trends Plant Sci 11:559–565

    Article  CAS  PubMed  Google Scholar 

  • Marvier M, Von Acker RC (2005) Can crop transgenes be kept on a leash? Front Ecol Environ 3:99–106

    Article  Google Scholar 

  • Meilan R, Ma C, Cheng S, Eaton JA, Miller LK, Crocket RP, DiFazio SP, Strauss SH (2000) High levels of roundup and leaf beetle resistance in genetically engineered hybrid cottonwoods. In: Blattner KA, Johnson JD, Baumgartner DM (eds) Hybrid poplars in the Pacific Northwest: culture, commerce and capability. Washington State University, Pullman, pp 29–38

    Google Scholar 

  • Meilan R, Han K-H, Ma C et al (2002) The CP4 transgene provides high levels of tolerance to Roundup herbicide in field-grown hybrid poplars. Can J For Res 32:967–976

    Article  CAS  Google Scholar 

  • Meilan R, Ellis D, Pilate G, Bruner AM, Skinner J (2004) Accomplishments and challenges in genetic engineering of forest trees. In: Strauss SH, Bradshaw HD (eds) The Bioengineered Forest Challenges for Science and Society. Resources for the Future, Washington, DC, pp 36–51

    Google Scholar 

  • Mentag R, Luckevich M, Morency MJ, Séguin A (2003) Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol 23:405–411

    CAS  PubMed  Google Scholar 

  • Meyer P, Saedler H (1996) Homology-dependent gene silencing in plants. Annu Rev Plant Physiol 47:23–48

    Article  CAS  Google Scholar 

  • Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, Avissar R, Pacala SW, Levin SA (2002) Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409–413

    Article  CAS  PubMed  Google Scholar 

  • Newhouse AE, Schrodt F, Liang H, Maynard CA, Powell WA (2007) Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization. Plant Cell Rep 26:977–987

    Article  CAS  PubMed  Google Scholar 

  • Noël A, Levasseur C, Le VQ, Séguin A (2005) Enhanced resistance to fungal pathogens in forest trees by genetic transformation of black spruce and hybrid poplar with a Trichoderma harzianum endochitinase gene. Physiol Mol Plant Pathol 67:92–99

    Article  CAS  Google Scholar 

  • Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K (2006) Transformation of poplar (Popolus alba) plastids and expression of foreign proteins in trees. Transgenic Res 15:637–644

    Article  CAS  PubMed  Google Scholar 

  • Ow DW (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48:163–200

    Google Scholar 

  • Park YW, Baba K, Furuta Y, Lida I, Sameshima K, Arai M, Hayashi T (2004) Enhanced growth and cellulose accumulation by overexpression of xylogluconase in poplar. FEBS Lett 564:183–187

    Article  CAS  PubMed  Google Scholar 

  • Pasonen H-L, Seppänen S-K, Degefu Y, Rytkönen A, Von Weissenberg K, Pappinen A (2004) Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal disease. Theor Appl Genet 109:562–570

    Article  CAS  PubMed  Google Scholar 

  • Peña L, Séguin A (2001) Recent advances in genetic transformation of trees. Trends Biotechnol 12:500–506

    Article  Google Scholar 

  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé J-C, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612

    Article  CAS  PubMed  Google Scholar 

  • Reichman JR, Watrud LS, Lee EH, Burdick CA, Bollman MA, Strom MJ, King GA, Mallory-Smith C (2006) Establishment of transgenic herbicide resistant creeping bentgrass (Agrostis stolonifera L.) in non-agronomic habitats. Mol Ecol 15:4243–4255

    Article  CAS  PubMed  Google Scholar 

  • Robischon M (2006) Field trials with transgenic trees- state of art and development. In: Fladung M, Ewald D (eds) Tree transgenesis: recent developments. Springer, Berlin, pp 3–23

    Google Scholar 

  • Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci USA 104:6998–7002

    Article  CAS  PubMed  Google Scholar 

  • Schuster WSF, Mitton JB (2000) Paternity and gene dispersal in limber pine (Pinus flexilus James). Genet Soc Great Br 84:348–361

    CAS  Google Scholar 

  • Sederoff R (2007) Regulatory science in forest biotechnology. Tree Genet Genomes 3:71–74

    Article  Google Scholar 

  • Sedjo RA (2006) Towards commercialization of genetically engineered forests: economic and social considerations. Resources for the Future, Washington, DC, pp 1–50

    Google Scholar 

  • Seppänen S-K, Syrjälä L, Von Weissenberg K, Teeri TH, Paajanen L, Pappinen A (2004) Antifungal activity of stilbenes in vitro bioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase. Plant Cell Rep 22:584–593

    Article  PubMed  CAS  Google Scholar 

  • Skinner JS, Meilan R, Ma C, Strauss SH (2003) The Populus PTD promoter imparts floral-predeterminant expression and enables high levels of floral-organ ablation in Populus, Nicotiana and Arabidopsis. Mol Breed 12:119–132

    Article  CAS  Google Scholar 

  • Slavov GT, Leonardi S, Burczyk J, Adams WT, Strauss SH, DiFazio SP (2009) Extensive pollen flow in two ecologically contrasting populations of Populus trichocarpa. Mol Ecol 18:357–373

    Article  CAS  PubMed  Google Scholar 

  • Smouse PE, Robledo-Arnuncio JJ, González-Martínez SC (2007) Implications of natural propagule flow for containment of genetically modified trees. Tree Genet Genomes 3:141–152

    Article  Google Scholar 

  • Srivastava V, Ariza-Netto M, Wilson AJ (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotech J 2:169–179

    Article  CAS  Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79:3–12

    Article  CAS  Google Scholar 

  • Stewart CN, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet 4:806–817

    Article  CAS  PubMed  Google Scholar 

  • Strauss SH (2003) Genomics, genetic engineering, and domestication of crops. Science 300:61–62

    Article  CAS  PubMed  Google Scholar 

  • Strauss SH, Rottmann WH, Brunner AM, Sheppard LA (1995) Genetic engineering of reproductive sterility in forest trees. Mol Breed 1:5–26

    Article  CAS  Google Scholar 

  • Strauss SH, Brunner AM, Busov VB, Ma C, Meilan R (2004) Ten lessons from 15 years of transgenic poplar research. Forestry 77:455–465

    Article  Google Scholar 

  • Tang W, Newton RJ (2003) Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22:1–15

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Tian Y (2003) Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified δ-endotoxin gene from Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud. J Exp Bot 54:835–844

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Newton RJ, Li C, Charles TM (2007) Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis. Plant Cell Rep 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Tiimonen H, Aronen T, Laakso T, Saranpää P, Chiang V, Ylioja T, Roininen H, Häggman H (2005) Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)? Planta 222:699–708

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Zuker A, Altman A (1998) Forest tree biotechnology: genetic transformation and its application to future forests. Trends Biotechnol 16:439–446

    Article  CAS  Google Scholar 

  • van Frankenhuzen K, Beardmore T (2004) Current status and environmental impacts of transgenic forest trees. Can J For Res 34:1163–1180

    Article  Google Scholar 

  • Wagner A, Phillips L, Narayan RD, Moody JM, Geddes B (2005) Gene silencing studies in the gymnosperm Pinus radiata. Plant Cell Rep 24:95102

    Article  CAS  Google Scholar 

  • Walter C, Charity J, Grace L, Höfig K, Möller R, Wagner A (2002) Gene technologies in Pinus radiate and Picea abies: tools for conifer biotechnology in the 21st century. Plant Cell Tissue Organ Cult 70:3–12

    Article  CAS  Google Scholar 

  • Wang G, Castiglione S, Chen Y, Han Y, Tian Y, Gabriel DW, Han Y, Mang K, Sala F (1996) Poplar (Populus nigra L) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Transgenic Res 5:280–301

    Article  Google Scholar 

  • Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR, Bollman M, Storm M, King G, Van de Water Pk (2004) Evidence for landscape-level pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc Natl Acad Sci USA 101:14533–14538

    Article  CAS  PubMed  Google Scholar 

  • Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Meilan R, Brunner AM, Skinner JS, Ma C, Strauss SH (2006) Transgene sterility in Populus: expression properties of the poplar PTLF, Agrobacterium NOS and two minimal 35S promoters in vegetative tissues. Tree Physiol 26:401–410

    PubMed  Google Scholar 

  • Wei H, Meilan R, Brunner AM, Skinner JS, Ma C, Gandhi HT, Strauss SH (2007) Field trial detect incomplete barstar attenuation of vegetative cytotoxicity in Populus trees containing a poplar LEAFY promoter::barnase sterility transgene. Mol Breed 19:69–85

    Article  CAS  Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CABI Publishing, Cambridge

    Google Scholar 

  • Williams CG (2005) Framing the issues on transgenic forests. Nat Biotechnol 23:530–532

    Article  CAS  PubMed  Google Scholar 

  • Williams CG, Davis BH (2005) Rate of transgenic spread via long-distance dispersal in Pinus taeda. For Ecol Manage 217:95–102

    Article  Google Scholar 

  • Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290:2088–2093

    Article  CAS  PubMed  Google Scholar 

  • Yang MS, Lang LS, Gao BJ, Wang JM, Zheng JB (2003) Insecticidal activity and transgene expression stability of transgenic hybrid poplar clone 741 carrying two insect-resistance genes. Silvae Genet 52:197–201

    Google Scholar 

  • Yu X, Kikuchi A, Matsunga E, Nanto K, Sakurai N, Suzuki H, Shibata D, Shimada T, Wanatabe KN (2009) Establishment of the evaluation system of salt tolerance on transgenic woody plants in the special netted-house. Plant Biotechnol 26:135–142

    CAS  Google Scholar 

  • Zobel BJ, Talbert BJ (1984) Applied forest tree improvement. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

I thank the Institute of Forest Genetics, USDA Forest Service, and the Department of Plant Sciences, University of California, Davis, for facilities. I also thank David Neale for helpful suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mulkh Raj Ahuja.

Additional information

Communicated by F. Cánovas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahuja, M.R. Transgene stability and dispersal in forest trees. Trees 23, 1125–1135 (2009). https://doi.org/10.1007/s00468-009-0362-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-009-0362-8

Keywords

Navigation