Skip to main content
Log in

Cardiovascular risk assessment in children with chronic kidney disease

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is a major factor contributing to cardiovascular (CV) morbidity and mortality with the highest risk in patients on dialysis. An estimation of CV risk is important not only to identify potential modifiable risk factors but also to evaluate the effect of treatments aimed to reduce the risk. Non-invasive methods of measuring vascular changes and circulating biomarkers are available to assess the presence and severity of cardiovascular damage. These include measures of structural (carotid intima-media thickness and coronary artery calcification score) and functional (aortic pulse wave velocity, 24-h ambulatory blood pressure monitoring, ambulatory arterial stiffness index, heart rate variability and flow-mediated dilatation) changes in the vessel wall. In addition, a number of circulating biomarkers of vascular damage and its progression have been studied. Many of these tests are well validated as surrogate markers of future cardiovascular events and death in adult CKD patients, but need technical adaptation, standardization and validation for use in children. With our current state of knowledge, these are best reserved for research studies and scarce clinical resources may be better utilized for preventative strategies to reduce the modifiable risk factors for calcification from early CKD stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Shroff R, Quinlan C, Mitsnefes M (2011) Uraemic vasculopathy in children with chronic kidney disease: prevention or damage limitation? Pediatr Nephrol 26:853–865

    Article  PubMed  Google Scholar 

  2. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  PubMed  CAS  Google Scholar 

  3. Parfrey PS, Foley RN (1999) The clinical epidemiology of cardiac disease in chronic renal failure. J Am Soc Nephrol: JASN 10:1606–1615

    PubMed  CAS  Google Scholar 

  4. Parekh RS, Carroll CE, Wolfe RA, Port FK (2002) Cardiovascular mortality in children and young adults with end-stage kidney disease. J Pediatr 141:191–197

    Article  PubMed  CAS  Google Scholar 

  5. McDonald SP, Craig JC (2004) Long-term survival of children with end-stage renal disease. N Engl J Med 350:2654–2662

    Article  PubMed  CAS  Google Scholar 

  6. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, Mehls O, Schaefer F (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106:100–105

    Article  PubMed  Google Scholar 

  7. Covic A, Gusbeth-Tatomir P, Goldsmith DJ (2003) The challenge of cardiovascular risk factors in end-stage renal disease. J Nephrol 16:476–486

    PubMed  Google Scholar 

  8. Urbina EM, Williams RV, Alpert BS, Collins RT, Daniels SR, Hayman L, Jacobson M, Mahoney L, Mietus-Snyder M, Rocchini A, Steinberger J, McCrindle B (2009) Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension 54:919–950

    Article  PubMed  CAS  Google Scholar 

  9. Ichida F, Aubert A, Denef B, Dumoulin M, Van der Hauwaert LG (1987) Cross-sectional echocardiographic assessment of great artery diameters in infants and children. Br Hear J 58:627–634

    Article  CAS  Google Scholar 

  10. van Meurs-van Woezik H, Klein HW, Markus-Silvis L, Krediet P (1983) Comparison of the growth of the tunica media of the ascending aorta, aortic isthmus and descending aorta in infants and children. J Anat 136:273–281

    PubMed  Google Scholar 

  11. Jourdan C, Wuhl E, Litwin M, Fahr K, Trelewicz J, Jobs K, Schenk JP, Grenda R, Mehls O, Troger J, Schaefer F (2005) Normative values for intima-media thickness and distensibility of large arteries in healthy adolescents. J Hypertens 23:1707–1715

    Article  PubMed  CAS  Google Scholar 

  12. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Hear J 27:2588–2605

    Article  Google Scholar 

  13. Pannier B, Guerin AP, Marchais SJ, Safar ME, London GM (2005) Stiffness of capacitive and conduit arteries: prognostic significance for end-stage renal disease patients. Hypertension 45:592–596

    Article  PubMed  CAS  Google Scholar 

  14. (2010) Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J 31:2338–2350

  15. Kis E, Cseprekal O, Kerti A, Salvi P, Benetos A, Tisler A, Szabo A, Tulassay T, Reusz GS (2011) Measurement of pulse wave velocity in children and young adults: a comparative study using three different devices. Hypertens Res 34:1197–1202

    Article  PubMed  Google Scholar 

  16. Kracht D, Shroff R, Baig S, Doyon A, Jacobi C, Zeller R, Querfeld U, Schaefer F, Wuhl E, Schmidt BM, Melk A (2011) Validating a new oscillometric device for aortic pulse wave velocity measurements in children and adolescents. Am J Hypertens 24:1294–1299

    Article  PubMed  Google Scholar 

  17. Cseprekal O, Kis E, Schaffer P, Othmane Tel H, Fekete BC, Vannay A, Szabo AJ, Remport A, Szabo A, Tulassay T, Reusz GS (2009) Pulse wave velocity in children following renal transplantation. Nephrol Dial Transplant 24:309–315

    Article  PubMed  Google Scholar 

  18. Kis E, Cseprekal O, Horvath Z, Katona G, Fekete BC, Hrapka E, Szabo A, Szabo AJ, Fekete A, Reusz GS (2008) Pulse wave velocity in end-stage renal disease: influence of age and body dimensions. Pediatr Res 63:95–98

    Article  PubMed  Google Scholar 

  19. Reusz GS, Cseprekal O, Temmar M, Kis E, Cherif AB, Thaleb A, Fekete A, Szabo AJ, Benetos A, Salvi P (2010) Reference values of pulse wave velocity in healthy children and teenagers. Hypertension 56:217–224

    Article  PubMed  CAS  Google Scholar 

  20. Covic A, Mardare N, Gusbeth-Tatomir P, Brumaru O, Gavrilovici C, Munteanu M, Prisada O, Goldsmith DJ (2006) Increased arterial stiffness in children on haemodialysis. Nephrol Dial Transplant 21:729–735

    Article  PubMed  Google Scholar 

  21. Kis E, Cseprekal O, Biro E, Kelen K, Ferenczi D, Kerti A, Szabo AJ, Szabo A, Reusz GS (2009) Effects of bone and mineral metabolism on arterial elasticity in chronic renal failure. Pediatric Nephrol 24:2413–2420

    Article  Google Scholar 

  22. Shroff RC, Donald AE, Hiorns MP, Watson A, Feather S, Milford D, Ellins EA, Storry C, Ridout D, Deanfield J, Rees L (2007) Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol 18:2996–3003

    Article  PubMed  CAS  Google Scholar 

  23. Litwin M, Niemirska A (2009) Intima-media thickness measurements in children with cardiovascular risk factors. Pediatric Nephrol 24:707–719

    Article  Google Scholar 

  24. Benedetto FA, Mallamaci F, Tripepi G, Zoccali C (2001) Prognostic value of ultrasonographic measurement of carotid intima media thickness in dialysis patients. J Am Soc Nephrol 12:2458–2464

    PubMed  CAS  Google Scholar 

  25. Mitsnefes MM, Kimball TR, Kartal J, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2005) Cardiac and vascular adaptation in pediatric patients with chronic kidney disease: role of calcium-phosphorus metabolism. J Am Soc Nephrol 16:2796–2803

    Article  PubMed  CAS  Google Scholar 

  26. Litwin M, Wuhl E, Jourdan C, Trelewicz J, Niemirska A, Fahr K, Jobs K, Grenda R, Wawer ZT, Rajszys P, Troger J, Mehls O, Schaefer F (2005) Altered morphologic properties of large arteries in children with chronic renal failure and after renal transplantation. J Am Soc Nephrol 16:1494–1500

    Article  PubMed  Google Scholar 

  27. Shroff R, Egerton M, Bridel M, Shah V, Donald AE, Cole TJ, Hiorns MP, Deanfield JE, Rees L (2008) A bimodal association of vitamin D levels and vascular disease in children on dialysis. J Am Soc Nephrol 19:1239–1246

    Article  PubMed  CAS  Google Scholar 

  28. Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, Selznick SH, Dominguez CE, Jurutka PW (1998) The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 13:325–349

    Article  PubMed  CAS  Google Scholar 

  29. Patel S, Farragher T, Berry J, Bunn D, Silman A, Symmons D (2007) Association between serum vitamin D metabolite levels and disease activity in patients with early inflammatory polyarthritis. Arthritis Rheum 56:2143–2149

    Article  PubMed  CAS  Google Scholar 

  30. Levin A, Li YC (2005) Vitamin D and its analogues: do they protect against cardiovascular disease in patients with kidney disease? Kidney Int 68:1973–1981

    Article  PubMed  CAS  Google Scholar 

  31. Schleithoff SS, Zittermann A, Tenderich G, Berthold HK, Stehle P, Koerfer R (2006) Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr 83:754–759

    PubMed  CAS  Google Scholar 

  32. Muller K, Haahr PM, Diamant M, Rieneck K, Kharazmi A, Bendtzen K (1992) 1,25-Dihydroxyvitamin D3 inhibits cytokine production by human blood monocytes at the post-transcriptional level. Cytokine 4:506–512

    Article  PubMed  CAS  Google Scholar 

  33. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  PubMed  CAS  Google Scholar 

  34. Shroff R, Knott C, Rees L (2010) The virtues of vitamin D–but how much is too much? Pediatr Nephrol 25:1607–1620

    Article  PubMed  Google Scholar 

  35. Wuhl E, Witte K, Soergel M, Mehls O, Schaefer F (2002) Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens 20:1995–2007

    Article  PubMed  Google Scholar 

  36. Hadtstein C, Wuhl E, Soergel M, Witte K, Schaefer F (2004) Normative values for circadian and ultradian cardiovascular rhythms in childhood. Hypertension 43:547–554

    Article  PubMed  CAS  Google Scholar 

  37. Wuhl E, Hadtstein C, Mehls O, Schaefer F (2005) Ultradian but not circadian blood pressure rhythms correlate with renal dysfunction in children with chronic renal failure. J Am Soc Nephrol 16:746–754

    Article  PubMed  Google Scholar 

  38. Dolan E, Thijs L, Li Y, Atkins N, McCormack P, McClory S, O’Brien E, Staessen JA, Stanton AV (2006) Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin Outcome Study. Hypertension 47:365–370

    Article  PubMed  CAS  Google Scholar 

  39. Li Y, Wang JG, Dolan E, Gao PJ, Guo HF, Nawrot T, Stanton AV, Zhu DL, O’Brien E, Staessen JA (2006) Ambulatory arterial stiffness index derived from 24-hour ambulatory blood pressure monitoring. Hypertension 47:359–364

    Article  PubMed  CAS  Google Scholar 

  40. Simonetti GD, von Vigier RO, Wuhl E, Mohaupt MG (2008) Ambulatory arterial stiffness index is increased in hypertensive childhood disease. Pediatr Res 64:303–307

    Article  PubMed  Google Scholar 

  41. Stergiou GS, Kollias A, Giovas PP, Papagiannis J, Roussias LG (2010) Ambulatory arterial stiffness index, pulse pressure and pulse wave velocity in children and adolescents. Hypertens Res: Official Journal of the Japanese Society of Hypertension 33:1272–1277

    Article  Google Scholar 

  42. Shimbo D, Grahame-Clarke C, Miyake Y, Rodriguez C, Sciacca R, Di Tullio M, Boden-Albala B, Sacco R, Homma S (2007) The association between endothelial dysfunction and cardiovascular outcomes in a population-based multi-ethnic cohort. Atherosclerosis 192:197–203

    Article  PubMed  CAS  Google Scholar 

  43. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39:257–265

    Article  PubMed  Google Scholar 

  44. Moens AL, Goovaerts I, Claeys MJ, Vrints CJ (2005) Flow-mediated vasodilation: a diagnostic instrument, or an experimental tool? Chest 127:2254–2263

    Article  PubMed  Google Scholar 

  45. Yilmaz MI, Stenvinkel P, Sonmez A, Saglam M, Yaman H, Kilic S, Eyileten T, Caglar K, Oguz Y, Vural A, Cakar M, Altun B, Yenicesu M, Carrero JJ (2011) Vascular health, systemic inflammation and progressive reduction in kidney function; clinical determinants and impact on cardiovascular outcomes. Nephrol Dial Transplant 26:3537–3543

    Article  PubMed  Google Scholar 

  46. Hussein G, Bughdady Y, Kandil ME, Bazaraa HM, Taher H (2008) Doppler assessment of brachial artery flow as a measure of endothelial dysfunction in pediatric chronic renal failure. Pediatric Nephrol 23:2025–2030

    Article  Google Scholar 

  47. Bots ML, Westerink J, Rabelink TJ, de Koning EJ (2005) Assessment of flow-mediated vasodilatation (FMD) of the brachial artery: effects of technical aspects of the FMD measurement on the FMD response. Eur Hear J 26:363–368

    Article  Google Scholar 

  48. Ranpuria R, Hall M, Chan CT, Unruh M (2008) Heart rate variability (HRV) in kidney failure: measurement and consequences of reduced HRV. Nephrol Dial Transplant 23:444–449

    Article  PubMed  Google Scholar 

  49. (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93:1043–1065

  50. Tory K, Suveges Z, Horvath E, Bokor E, Sallay P, Berta K, Szabo A, Tulassay T, Reusz GS (2003) Autonomic dysfunction in uremia assessed by heart rate variability. Pediatr Nephrol 18:1167–1171

    Article  PubMed  Google Scholar 

  51. Tory K, Horvath E, Suveges Z, Fekete A, Sallay P, Berta K, Szabo T, Szabo AJ, Tulassay T, Reusz GS (2004) Effect of propranolol on heart rate variability in patients with end-stage renal disease: a double-blind, placebo-controlled, randomized crossover pilot trial. Clin Nephrol 61:316–323

    PubMed  CAS  Google Scholar 

  52. Ewing DJ, Winney R (1975) Autonomic function in patients with chronic renal failure on intermittent haemodialysis. Nephron 15:424–429

    Article  PubMed  CAS  Google Scholar 

  53. Bar-Haim Y, Marshall PJ, Fox NA (2000) Developmental changes in heart period and high-frequency heart period variability from 4 months to 4 years of age. Dev Psychobiol 37:44–56

    Article  PubMed  CAS  Google Scholar 

  54. Massin M, von Bernuth G (1997) Normal ranges of heart rate variability during infancy and childhood. Pediatr Cardiol 18:297–302

    Article  PubMed  CAS  Google Scholar 

  55. Civilibal M, Caliskan S, Oflaz H, Sever L, Candan C, Canpolat N, Kasapcopur O, Bugra Z, Arisoy N (2007) Traditional and “new” cardiovascular risk markers and factors in pediatric dialysis patients. Pediatric Nephrol 22:1021–1029

    Article  Google Scholar 

  56. Srivaths PR, Silverstein DM, Leung J, Krishnamurthy R, Goldstein SL (2010) Malnutrition-inflammation-coronary calcification in pediatric patients receiving chronic hemodialysis. Hemodial Int: International Symposium on Home Hemodialysis 14:263–269

    Article  Google Scholar 

  57. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, Wang Y, Chung J, Emerick A, Greaser L, Elashoff RM, Salusky IB (2000) Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 342:1478–1483

    Article  PubMed  CAS  Google Scholar 

  58. Schoppet M, Shroff RC, Hofbauer LC, Shanahan CM (2008) Exploring the biology of vascular calcification in chronic kidney disease: what’s circulating? Kidney Int 73:384–390

    Article  PubMed  CAS  Google Scholar 

  59. Ketteler M, Bongartz P, Westenfeld R, Wildberger JE, Mahnken AH, Bohm R, Metzger T, Wanner C, Jahnen-Dechent W, Floege J (2003) Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet 361:827–833

    Article  PubMed  CAS  Google Scholar 

  60. Shroff RC, McNair R, Figg N, Skepper JN, Schurgers L, Gupta A, Hiorns M, Donald AE, Deanfield J, Rees L, Shanahan CM (2008) Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation 118:1748–1757

    Article  PubMed  CAS  Google Scholar 

  61. Hermans MM, Brandenburg V, Ketteler M, Kooman JP, van der Sande FM, Boeschoten EW, Leunissen KM, Krediet RT, Dekker FW (2007) Association of serum fetuin-A levels with mortality in dialysis patients. Kidney Int 72:202–207

    Article  PubMed  CAS  Google Scholar 

  62. Shroff RC, Shah V, Hiorns MP, Schoppet M, Hofbauer LC, Hawa G, Schurgers LJ, Singhal A, Merryweather I, Brogan P, Shanahan C, Deanfield J, Rees L (2008) The circulating calcification inhibitors, fetuin-A and osteoprotegerin, but not matrix Gla protein, are associated with vascular stiffness and calcification in children on dialysis. Nephrol Dial Transplant 23:3263–3271

    Article  PubMed  CAS  Google Scholar 

  63. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  CAS  Google Scholar 

  64. Hjelmesaeth J, Ueland T, Flyvbjerg A, Bollerslev J, Leivestad T, Jenssen T, Hansen TK, Thiel S, Sagedal S, Roislien J, Hartmann A (2006) Early posttransplant serum osteoprotegerin levels predict long-term (8-year) patient survival and cardiovascular death in renal transplant patients. J Am Soc Nephrol 17:1746–1754

    Article  PubMed  CAS  Google Scholar 

  65. Braam LA, Dissel P, Gijsbers BL, Spronk HM, Hamulyak K, Soute BA, Debie W, Vermeer C (2000) Assay for human matrix gla protein in serum: potential applications in the cardiovascular field. Arterioscler Thromb Vasc Biol 20:1257–1261

    Article  PubMed  CAS  Google Scholar 

  66. Jono S, Ikari Y, Vermeer C, Dissel P, Hasegawa K, Shioi A, Taniwaki H, Kizu A, Nishizawa Y, Saito S (2004) Matrix Gla protein is associated with coronary artery calcification as assessed by electron-beam computed tomography. Thromb Haemost 91:790–794

    PubMed  CAS  Google Scholar 

  67. Shroff R, Wan M, Rees L (2011) Can vitamin D slow down the progression of chronic kidney disease? Pediatr Nephrol

  68. Teng M, Wolf M, Lowrie E, Ofsthun N, Lazarus JM, Thadhani R (2003) Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med 349:446–456

    Article  PubMed  CAS  Google Scholar 

  69. Tentori F, Hunt WC, Stidley CA, Rohrscheib MR, Bedrick EJ, Meyer KB, Johnson HK, Zager PG (2006) Mortality risk among hemodialysis patients receiving different vitamin D analogs. Kidney Int 70:1858–1865

    Article  PubMed  CAS  Google Scholar 

  70. Gutierrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G, Sarwar A, Hoffmann U, Coglianese E, Christenson R, Wang TJ, deFilippi C, Wolf M (2009) Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119:2545–2552

    Article  PubMed  CAS  Google Scholar 

  71. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Juppner H, Wolf M (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359:584–592

    Article  PubMed  CAS  Google Scholar 

  72. van Husen M, Fischer AK, Lehnhardt A, Klaassen I, Moller K, Muller-Wiefel DE, Kemper MJ (2010) Fibroblast growth factor 23 and bone metabolism in children with chronic kidney disease. Kidney Int 78:200–206

    Article  PubMed  Google Scholar 

  73. Wesseling-Perry K, Pereira RC, Wang H, Elashoff RM, Sahney S, Gales B, Juppner H, Salusky IB (2009) Relationship between plasma fibroblast growth factor-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J Clin Endocrinol Metab 94:511–517

    Article  PubMed  CAS  Google Scholar 

  74. Erbel R, Mohlenkamp S, Kerkhoff G, Budde T, Schmermund A (2007) Non-invasive screening for coronary artery disease: calcium scoring. Heart 93:1620–1629

    Article  PubMed  CAS  Google Scholar 

  75. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the following Hungarian National Grants: OTKA 100909, PD83431; TÁMOP 4.2.3/08/1/KMR-2008-0003, 4.2.2. B-10/1.2010-2013; LP 2001-008/2011 and by the Hungarian Society of Nephrology. RS has received grants from Kids Kidney Research and British Heart Foundation, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Reusz.

Additional information

Answers

1. d; 2. a; 3. c; 4. d; 5. c.

Questions (answers are provided following the reference list)

Questions (answers are provided following the reference list)

  1. 1.

    Which are the most popular methods for PWV measurement in children?

    1. a.

      MRI and ultrasound

    2. b.

      ultrasound and oscillometric

    3. c.

      MRI and applanation tonometry

    4. d.

      oscillometric and applanation tonometry

  2. 2.

    Which statement is true about cIMT?

    1. a.

      cIMT increases linearly with age

    2. b.

      cIMT is a direct measure of the calcium content of the vessel

    3. c.

      cIMT is inversely related to PWV

    4. d.

      Dialysis and appropriate medical treatment of the disturbed calcium and phosphate metabolism, may decrease cIMT to the normal values

  3. 3.

    PWV as an established marker of cardiovascular risk should be used

    1. a.

      in the daily practice to assess the efficacy of therapeutic interventions to reduce cardiovascular risk

    2. b.

      in combination with 24-h blood pressure monitoring, because both are needed to calculate AASI

    3. c.

      in multi-center interventional follow-up studies to assess the efficacy of therapeutic interventions to reduce cardiovascular risk

    4. d.

      to assess the degree of vascular calcification in patients with CKD

  4. 4.

    Which of the following measures predict a risk of CV disease in CKD:

    1. a.

      Fetuin-A

    2. b.

      Serum creatinine

    3. c.

      Fibroblast growth factor-23 (FGF-23)

    4. d.

      All of the above

  5. 5.

    Which one of the following statements regarding Fetuin-A is true:

    1. a.

      It is a vitamin K-dependent protein.

    2. b.

      It is produced by bone and acts in the blood vessels.

    3. c.

      It is localized to sites of calcification and prevents further crystal growth.

    4. d.

      High circulating levels are seen in patients with calcification.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shroff, R., Dégi, A., Kerti, A. et al. Cardiovascular risk assessment in children with chronic kidney disease. Pediatr Nephrol 28, 875–884 (2013). https://doi.org/10.1007/s00467-012-2325-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2325-3

Keywords

Navigation