Skip to main content

Advertisement

Log in

Lipoprotein metabolism in chronic renal insufficiency

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Chronic renal insufficiency (CRI) is associated with a characteristic dyslipidemia. Findings in children with CRI largely parallel those in adults. Moderate hypertriglyceridemia, increased triglyceride-rich lipoproteins (TRL) and reduced high-density lipoproteins (HDL) are the most usual findings, whereas total and low-density lipoprotein cholesterol (LDL-C) remain normal or modestly increased. Qualitative abnormalities in lipoproteins are common, including small dense LDL, oxidized LDL, and cholesterol-enriched TRL. Measures of lipoprotein lipase and hepatic lipase activity are reduced, and concentrations of apolipoprotein C-III are markedly elevated. Still an active area of research, major pathophysiological mechanisms leading to the dyslipidemia of CRI include insulin resistance and nonnephrotic proteinuria. Sources of variability in the severity of this dyslipidemia include the degree of renal impairment and the modality of dialysis. The benefits of maintaining normal body weight and physical activity extend to those with CRI. In addition to multiple hypolipidemic pharmaceuticals, fish oils are also effective as a triglyceride-lowering agent, and the phosphorous binding agent sevelamer also lowers LDL-C. Emerging classes of hypolipidemic agents and drugs affecting sensitivity to insulin may impact future treatment. Unfortunately, cardiovascular benefit has not been convincingly demonstrated by any trial designed to study adults or children with renal disease. Therefore, it is not possible at this time to endorse general recommendations for the use of any agent to treat dyslipidemia in children with chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AAP:

American Academy of Pediatrics

ADPKD:

Autosomal dominant polycystic kidney disease

AHA:

American Heart Association

Apo:

apoproteins (apolipoproteins)

ASCVD:

atherosclerotic cardiovascular disease

ATGL:

adipose triglyceride lipase

CE:

esterified cholesterol (cholesteryl esters)

CETP:

cholesteryl ester transfer protein

CKD:

chronic kidney disease

CRI:

chronic renal insufficiency

DHA:

docosahexaenoic acid

EPA:

eicosapentaenoic acid

ESRD:

end-stage renal disease

FFA:

free fatty acids (nonesterified fatty acids)

FSGS:

focal and segmental glomerulosclerosis

GFR:

glomerular filtration rate

HDL:

high-density lipoproteins

HDL-C:

HDL cholesterol (cholesterol content of HDL)

HL:

hepatic lipase

HSL:

hormone-sensitive lipase

HSPG:

heparan sulfate proteoglycans

IgAN:

immunoglobulin A nephropathy

IDL:

intermediate-density lipoproteins

IR:

insulin resistance

KDOQI:

National Kidney Foundation Kidney Disease Outcomes Quality Initiative

LCAT:

lecithin-cholesterol acyltransferase

LDL:

low-density lipoproteins

LDL-R:

LDL receptor

LPL:

lipoprotein lipase

LRP:

LDL-receptor-related protein

NKF:

National Kidney Foundation

PL:

phospholipids

PLTP:

phospholipid transfer protein

PON:

paraoxonase

PPAR:

peroxisome-proliferator-activated nuclear receptors

SNP:

single nucleotide polymorphisms

Statin:

3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitor

TG:

triglyceride

TRL:

triglyceride-rich lipoproteins [chylomicrons, very-low-density lipoproteins (VLDL) and their remnants]

VLDL:

very-low-density lipoproteins

References

  1. Kidney Disease Outcomes Quality Initiative (K/DOQI) Group (2003) K/DOQI clinical practice guidelines for management of dyslipidemias in patients with kidney disease. Am J Kidney Dis 41:I–IV, S1–91

    Google Scholar 

  2. Foley RN (2004) Cardiac disease in chronic uremia: can it explain the reverse epidemiology of hypertension and survival in dialysis patients? Semin Dial 17:275–278

    PubMed  Google Scholar 

  3. Nishizawa Y, Shoji T, Maekawa K, Nagasue K, Okuno S, Kim M, Emoto M, Ishimura E, Nakatani T, Miki T, Inaba M (2003) Intima-media thickness of carotid artery predicts cardiovascular mortality in hemodialysis patients. Am J Kidney Dis 41:S76–S79

    PubMed  Google Scholar 

  4. Foley RN, Parfrey PS, Sarnak MJ (1998) Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 32:S112–S119

    CAS  PubMed  Google Scholar 

  5. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, Wang Y, Chung J, Emerick A, Greaser L, Elashoff RM, Salusky IB (2000) Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 342:1478–1483

    CAS  PubMed  Google Scholar 

  6. Lilien MR, Stroes ES, Op’t Roodt J, de Jongh S, Schroder CH, Koomans HA (2003) Vascular function in children after renal transplantation. Am J Kidney Dis 41:684–691

    PubMed  Google Scholar 

  7. Milliner DS, Zinsmeister AR, Lieberman E, Landing B (1990) Soft tissue calcification in pediatric patients with end-stage renal disease. Kidney Int 38:931–936

    CAS  PubMed  Google Scholar 

  8. Pennisi AJ, Heuser ET, Mickey MR, Lipsey A, Malekzadeh MH, Fine RN (1976) Hyperlipidemia in pediatric hemodialysis and renal transplant patients. Associated with coronary artery disease. Am J Dis Child 130:957–961

    CAS  PubMed  Google Scholar 

  9. Nayir A, Bilge I, Kilicaslan I, Ander H, Emre S, Sirin A (2001) Arterial changes in paediatric haemodialysis patients undergoing renal transplantation. Nephrol Dial Transplant 16:2041–2047

    CAS  PubMed  Google Scholar 

  10. Litwin M, Wuhl E, Jourdan C, Trelewicz J, Niemirska A, Fahr K, Jobs K, Grenda R, Wawer ZT, Rajszys P, Troger J, Mehls O, Schaefer F (2005) Altered morphologic properties of large arteries in children with chronic renal failure and after renal transplantation. J Am Soc Nephrol 16:1494–1500

    Article  PubMed  Google Scholar 

  11. Mitsnefes MM, Kimball TR, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2004) Abnormal carotid artery structure and function in children and adolescents with successful renal transplantation. Circulation 110:97–101

    PubMed  Google Scholar 

  12. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, Mehls O, Schaefer F (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106:100–105

    PubMed  Google Scholar 

  13. Groothoff JW, Gruppen MP, Offringa M, Hutten J, Lilien MR, Van De Kar NJ, Wolff ED, Davin JC, Heymans HS (2002) Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study. Kidney Int 61:621–629

    PubMed  Google Scholar 

  14. McDonald SP, Craig JC (2004) Long-term survival of children with end-stage renal disease. N Engl J Med 350:2654–2662

    CAS  PubMed  Google Scholar 

  15. Groothoff JW, Gruppen MP, Offringa M, de Groot E, Stok W, Bos WJ, Davin JC, Lilien MR, Van de Kar NC, Wolff ED, Heymans HS (2002) Increased arterial stiffness in young adults with end-stage renal disease since childhood. J Am Soc Nephrol 13:2953–2961

    PubMed  Google Scholar 

  16. Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman WP III, Herderick EE, Cornhill JF (1999) Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 281:727–735

    CAS  PubMed  Google Scholar 

  17. Chavers B, Schnaper HW (2001) Risk factors for cardiovascular disease in children on maintenance dialysis. Adv Ren Replace Ther 8:180–190

    CAS  PubMed  Google Scholar 

  18. Cases A, Coll E (2005) Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int Suppl 99:S87–S93

    CAS  Google Scholar 

  19. Boes E, Fliser D, Ritz E, Konig P, Lhotta K, Mann JF, Muller GA, Neyer U, Riegel W, Riegler P, Kronenberg F (2006) Apolipoprotein A-IV predicts progression of chronic kidney disease: the mild to moderate kidney disease study. J Am Soc Nephrol 17:528–536

    CAS  PubMed  Google Scholar 

  20. Sandhu S, Wiebe N, Fried LF, Tonelli M (2006) Statins for improving renal outcomes: a meta-analysis. J Am Soc Nephrol 17:2006–2016

    CAS  PubMed  Google Scholar 

  21. Gotto AM Jr, Pownall HJ, Havel RJ (1986) Introduction to the plasma lipoproteins. Methods Enzymol 128:3–41

    CAS  PubMed  Google Scholar 

  22. Mills G, Lane P, Weech P (1984) Brief introduction to the plasma lipoproteins. Elsevier, Amsterdam

    Google Scholar 

  23. Ginsberg HN (1998) Lipoprotein physiology. Endocrinol Metab Clin North Am 27:503–519

    CAS  PubMed  Google Scholar 

  24. Spector AA (1975) Fatty acid binding to plasma albumin. J Lipid Res 16:165–179

    CAS  PubMed  Google Scholar 

  25. Havel RJ, Kane JP (2001) Introduction: structure and metabolism of plasma lipoproteins. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, pp 2705–2716

  26. Kasiske BL (1998) Hyperlipidemia in patients with chronic renal disease. Am J Kidney Dis 32:S142–S156

    CAS  PubMed  Google Scholar 

  27. Ginsberg HN (2002) New perspectives on atherogenesis: role of abnormal triglyceride-rich lipoprotein metabolism. Circulation 106:2137–2142

    PubMed  Google Scholar 

  28. Grundy SM (1995) Atherogenic dyslipidemia: lipoprotein abnormalities and implications for therapy. Am J Cardiol 75:45B–52B

    CAS  PubMed  Google Scholar 

  29. Third Report of the National Cholesterol Education Program (NCEP) (2002) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106:3143–3421

    Google Scholar 

  30. Querfeld U, Lang M, Friedrich JB, Kohl B, Fiehn W, Scharer K (1993) Lipoprotein(a) serum levels and apolipoprotein(a) phenotypes in children with chronic renal disease. Pediatr Res 34:772–776

    CAS  PubMed  Google Scholar 

  31. Asayama K, Hayashibe H, Mishiku Y, Honda M, Ito H, Nakazawa S (1996) Increased activity of plasma cholesteryl ester transfer protein in children with end-stage renal disease receiving continuous ambulatory peritoneal dialysis. Nephron 72:231–236

    CAS  PubMed  Google Scholar 

  32. Kosan C, Sever L, Arisoy N, Caliskan S, Kasapcopur O (2003) Carnitine supplementation improves apolipoprotein B levels in pediatric peritoneal dialysis patients. Pediatr Nephrol 18:1184–1188

    PubMed  Google Scholar 

  33. Gambert P, Lallemant C, Andre JL, Athias A, Bourquard R, Pierson M, Padieu P (1981) Cholesterol content of serum lipoprotein fractions in children maintained on chronic hemodialysis. Clin Chim Acta 110:295–300

    CAS  PubMed  Google Scholar 

  34. Papadopoulou ZL, Sandler P, Tina LU, Jose PA, Calcagno PL (1981) Hyperlipidemia in children with chronic renal insufficiency. Pediatr Res 15:887–891

    CAS  PubMed  Google Scholar 

  35. El Bishti M, Counahan R, Jarrett RJ, Stimmler L, Wass V, Chantler C (1977) Hyperlipidaemia in children on regular haemodialysis. Arch Dis Child 52:932–936

    PubMed  PubMed Central  Google Scholar 

  36. Ohta T, Matsuda I (1985) Apolipoprotein and lipid abnormalities in uremic children on hemodialysis. Clin Chim Acta 147:145–154

    CAS  PubMed  Google Scholar 

  37. Zacchello G, Pagnan A, Sidran MP, Ziron L, Braggion M, Pavanello L, Facchin P (1987) Further definition of lipid-lipoprotein abnormalities in children with various degrees of chronic renal insufficiency. Pediatr Res 21:462–465

    CAS  PubMed  Google Scholar 

  38. Querfeld U, Salusky IB, Nelson P, Foley J, Fine RN (1988) Hyperlipidemia in pediatric patients undergoing peritoneal dialysis. Pediatr Nephrol 2:447–452

    CAS  PubMed  Google Scholar 

  39. Muller T, Koeppe S, Arbeiter K, Luckner D, Salzer U, Balzar E, Aufricht C (2003) Serum lipid pattern unifies following renal transplantation in children. Pediatr Nephrol 18:939–942

    PubMed  Google Scholar 

  40. Berger M, James GP, Davis ER, Jasper PM, Brouhard BH, Travis LB, Cunningham RJ (1978) Hyperlipidemia in uremic children: response to peritoneal dialysis and hemodialysis. Clin Nephrol 9:19–24

    CAS  PubMed  Google Scholar 

  41. Broyer M, Niaudet P, Champion G, Jean G, Chopin N, Czernichow P (1983) Nutritional and metabolic studies in children on continuous ambulatory peritoneal dialysis. Kidney Int Suppl 15:S106–S110

    CAS  PubMed  Google Scholar 

  42. Van Gool S, Van Damme-Lombaerts R, Cobbaert C, Proesmans W, Eggermont E (1991) Lipid and lipoprotein abnormalities in children on hemodialysis and after renal transplantation. Transplant Proc 23:1375–1377

    PubMed  Google Scholar 

  43. Scolnik D, Balfe JW (1993) Initial hypoalbuminemia and hyperlipidemia persist during chronic peritoneal dialysis in children. Perit Dial Int 13:136–139

    CAS  PubMed  Google Scholar 

  44. Asayama K, Ito H, Nakahara C, Hasegawa A, Kato K (1984) Lipid profiles and lipase activities in children and adolescents with chronic renal failure treated conservatively or with hemodialysis or transplantation. Pediatr Res 18:783–788

    CAS  PubMed  Google Scholar 

  45. Bakkaloglu SA, Buyan N, Funahashi T, Pasaoglu H, Elhan AH, Hasanoglu E, Soylemezoglu O (2005) Adiponectin levels and atherosclerotic risk factors in pediatric chronic peritoneal dialysis patients. Perit Dial Int 25:357–361

    CAS  PubMed  Google Scholar 

  46. Cengiz N, Baskin E, Agras PI, Sezgin N, Saatci U (2005) Relationship between chronic inflammation and cardiovascular risk factors in children on maintenance hemodialysis. Transplant Proc 37:2915–2917

    CAS  PubMed  Google Scholar 

  47. Ohta T, Hattori S, Nishiyama S, Higashi A, Matsuda I (1989) Quantitative and qualitative changes of apolipoprotein AI-containing lipoproteins in patients on continuous ambulatory peritoneal dialysis. Metabolism 38:843–849

    CAS  PubMed  Google Scholar 

  48. Grutzmacher P, Marz W, Peschke B, Gross W, Schoeppe W (1988) Lipoproteins and apolipoproteins during the progression of chronic renal disease. Nephron 50:103–111

    CAS  PubMed  Google Scholar 

  49. Moberly JB, Attman PO, Samuelsson O, Johansson AC, Knight-Gibson C, Alaupovic P (1999) Apolipoprotein C-III, hypertriglyceridemia and triglyceride-rich lipoproteins in uremia. Miner Electrolyte Metab 25:258–262

    CAS  PubMed  Google Scholar 

  50. Bairaktari E, Elisaf M, Tsolas O, Siamopoulos KC (1998) Serum Lp(a) levels in patients with moderate renal failure [letter]. Nephron 79:367–368

    CAS  PubMed  Google Scholar 

  51. Milionis HJ, Elisaf MS, Tselepis A, Bairaktari E, Karabina SA, Siamopoulos KC (1999) Apolipoprotein(a) phenotypes and lipoprotein(a) concentrations in patients with renal failure. Am J Kidney Dis 33:1100–1106

    CAS  PubMed  Google Scholar 

  52. Monzani G, Bergesio F, Ciuti R, Rosati A, Frizzi V, Serruto A, Vitali D, Benucci A, Tosi PL, Bandini S, Salvadori M (1996) Lipoprotein abnormalities in chronic renal failure and dialysis patients. Blood Purif 14:262–272

    CAS  PubMed  Google Scholar 

  53. Attman PO, Alaupovic P (1991) Lipid and apolipoprotein profiles of uremic dyslipoproteinemia—relation to renal function and dialysis. Nephron 57:401–410

    CAS  PubMed  Google Scholar 

  54. Attman PO, Samuelsson OG, Moberly J, Johansson AC, Ljungman S, Weiss LG, Knight-Gibson C, Alaupovic P (1999) Apolipoprotein B-containing lipoproteins in renal failure: the relation to mode of dialysis. Kidney Int 55:1536–1542

    CAS  PubMed  Google Scholar 

  55. Lee DM, Knight-Gibson C, Samuelsson O, Attman PO, Wang CS, Alaupovic P (2002) Lipoprotein particle abnormalities and the impaired lipolysis in renal insufficiency. Kidney Int 61:209–218

    CAS  PubMed  Google Scholar 

  56. Reade V, Tailleux A, Reade R, Harduin P, Cachera C, Tacquet A, Fruchart JC, Fievet C (1993) Expression of apolipoprotein B epitopes in low density lipoproteins of hemodialyzed patients. Kidney Int 44:1360–1365

    CAS  PubMed  Google Scholar 

  57. Bergesio F, Monzani G, Ciuti R, Serruto A, Benucci A, Frizzi V, Salvadori M (1992) Lipids and apolipoproteins change during the progression of chronic renal failure. Clin Nephrol 38:264–270

    CAS  PubMed  Google Scholar 

  58. Chan MK, Persaud J, Varghese Z, Moorhead JF (1984) Pathogenic roles of post-heparin lipases in lipid abnormalities in hemodialysis patients. Kidney Int 25:812–818

    CAS  PubMed  Google Scholar 

  59. Deighan CJ, Caslake MJ, McConnell M, Boulton-Jones JM, Packard CJ (2000) Atherogenic lipoprotein phenotype in end-stage renal failure: origin and extent of small dense low-density lipoprotein formation. Am J Kidney Dis 35:852–862

    CAS  PubMed  Google Scholar 

  60. Sechi LA, Zingaro L, Catena C, Perin A, De Marchi S, Bartoli E (1999) Lipoprotein(a) and apolipoprotein(a) isoforms and proteinuria in patients with moderate renal failure. Kidney Int 56:1049–1057

    CAS  PubMed  Google Scholar 

  61. Senti M, Romero R, Pedro-Botet J, Pelegri A, Nogues X, Rubies-Prat J (1992) Lipoprotein abnormalities in hyperlipidemic and normolipidemic men on hemodialysis with chronic renal failure. Kidney Int 41:1394–1399

    CAS  PubMed  Google Scholar 

  62. Ece A, Atamer Y, Gurkan F, Davutoglu M, Bilici M, Tutanc M, Gunes A (2006) Paraoxonase, anti-oxidant response and oxidative stress in children with chronic renal failure. Pediatr Nephrol 21:239–245

    PubMed  Google Scholar 

  63. Biasioli S, Schiavon R, Petrosino L, De Fanti E, Cavalcanti G, Battaglia P, Fasolin A (2003) Paraoxonase activity and paraoxonase 1 gene polymorphism in patients with uremia. ASAIO J 49:295–299

    CAS  PubMed  Google Scholar 

  64. Miida T, Miyazaki O, Hanyu O, Nakamura Y, Hirayama S, Narita I, Gejyo F, Ei I, Tasaki K, Kohda Y, Ohta T, Yata S, Fukamachi I, Okada M (2003) LCAT-dependent conversion of prebeta1-HDL into alpha-migrating HDL is severely delayed in hemodialysis patients. J Am Soc Nephrol 14:732–738

    CAS  PubMed  Google Scholar 

  65. Mekki K, Bouchenak M, Lamri M, Remaoun M, Belleville J (2002) Changes in plasma lecithin: cholesterol acyltransferase activity, HDL(2), HDL(3) amounts and compositions in patients with chronic renal failure after different times of hemodialysis. Atherosclerosis 162:409–417

    CAS  PubMed  Google Scholar 

  66. Kimura H, Miyazaki R, Suzuki S, Gejyo F, Yoshida H (2001) Cholesteryl ester transfer protein as a protective factor against vascular disease in hemodialysis patients. Am J Kidney Dis 38:70–76

    CAS  PubMed  Google Scholar 

  67. Sutherland WH, de Jong SA, Walker RJ (2004) Hypochlorous acid and low serum paraoxonase activity in haemodialysis patients: an in vitro study. Nephrol Dial Transplant 19:75–82

    CAS  PubMed  Google Scholar 

  68. Liberopoulos EN, Papavasiliou E, Miltiadous GA, Cariolou M, Siamopoulos KC, Tselepis AD, Elisaf MS (2004) Alterations of paraoxonase and platelet-activating factor acetylhydrolase activities in patients on peritoneal dialysis. Perit Dial Int 24:580–589

    CAS  PubMed  Google Scholar 

  69. Laron Z, Wang XL, Klinger B, Silbergeld A, Davidovits M, Eisenstein B, Wilcken DE (1996) Growth hormone treatment increases circulating lipoprotein(a) in children with chronic renal failure. J Pediatr Endocrinol Metab 9:533–537

    CAS  PubMed  Google Scholar 

  70. Jedrzejowski A, Panczyk-Tomaszewska M, Roszkowska-Blaim M, Lis D, Galazka B, Dyras P (2002) Growth hormone therapy and lipid profile in children on chronic peritoneal dialysis. Pediatr Nephrol 17:830–836

    PubMed  Google Scholar 

  71. Schiavon R, De Fanti E, Giavarina D, Biasioli S, Cavalcanti G, Guidi G (1996) Serum paraoxonase activity is decreased in uremic patients. Clin Chim Acta 247:71–80

    CAS  PubMed  Google Scholar 

  72. Dantoine TF, Debord J, Charmes JP, Merle L, Marquet P, Lachatre G, Leroux-Robert C (1998) Decrease of serum paraoxonase activity in chronic renal failure. J Am Soc Nephrol 9:2082–2088

    CAS  PubMed  Google Scholar 

  73. Dirican M, Akca R, Sarandol E, Dilek K (2004) Serum paraoxonase activity in uremic predialysis and hemodialysis patients. J Nephrol 17:813–818

    CAS  PubMed  Google Scholar 

  74. Suehiro T, Ikeda Y, Shiinoki T, Inoue M, Kumon Y, Itahara T, Hashimoto K (2002) Serum paraoxonase (PON1) concentration in patients undergoing hemodialysis. J Atheroscler Thromb 9:133–138

    CAS  PubMed  Google Scholar 

  75. Jurek A, Turyna B, Kubit P, Klein A (2006) LDL susceptibility to oxidation and HDL antioxidant capacity in patients with renal failure. Clin Biochem 39:19–27

    CAS  PubMed  Google Scholar 

  76. Velez-Carrasco W, Lichtenstein AH, Barrett PH, Sun Z, Dolnikowski GG, Welty FK, Schaefer EJ (1999) Human apolipoprotein A-I kinetics within triglyceride-rich lipoproteins and high density lipoproteins. J Lipid Res 40:1695–1700

    CAS  PubMed  Google Scholar 

  77. Zilversmit DB (1979) Atherogenesis: a postprandial phenomenon. Circulation 60:473–485

    CAS  PubMed  Google Scholar 

  78. Weintraub MS, Grosskopf I, Rassin T, Miller H, Charach G, Rotmensch HH, Liron M, Rubinstein A, Iaina A (1996) Clearance of chylomicron remnants in normolipidaemic patients with coronary artery disease: case control study over three years. BMJ 312:936–939

    Google Scholar 

  79. Boquist S, Ruotolo G, Tang R, Bjorkegren J, Bond MG, de Faire U, Karpe F, Hamsten A (1999) Alimentary lipemia, postprandial triglyceride-rich lipoproteins, and common carotid intima-media thickness in healthy, middle-aged men. Circulation 100:723–728

    CAS  PubMed  Google Scholar 

  80. Karpe F, de Faire U, Mercuri M, Bond MG, Hellenius ML, Hamsten A (1998) Magnitude of alimentary lipemia is related to intima-media thickness of the common carotid artery in middle-aged men. Atherosclerosis 141:307–314

    CAS  PubMed  Google Scholar 

  81. Cohn JS (1998) Postprandial lipemia: emerging evidence for atherogenicity of remnant lipoproteins. Can J Cardiol 14(Suppl B):18B–27B

    CAS  PubMed  Google Scholar 

  82. Sharrett AR, Chambless LE, Heiss G, Paton CC, Patsch W (1995) Association of postprandial triglyceride and retinyl palmitate responses with asymptomatic carotid artery atherosclerosis in middle-aged men and women. The Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler Thromb Vasc Biol 15:2122–2129

    CAS  PubMed  Google Scholar 

  83. Ginsberg HN, Jones J, Blaner WS, Thomas A, Karmally W, Fields L, Blood D, Begg MD (1995) Association of postprandial triglyceride and retinyl palmitate responses with newly diagnosed exercise-induced myocardial ischemia in middle-aged men and women. Arterioscler Thromb Vasc Biol 15:1829–1838

    CAS  PubMed  Google Scholar 

  84. Eberly LE, Stamler J, Neaton JD (2003) Relation of triglyceride levels, fasting and nonfasting, to fatal and nonfatal coronary heart disease. Arch Intern Med 163:1077–1083

    PubMed  Google Scholar 

  85. Fisher EA, Ginsberg HN (2002) Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem 277:17377–17380

    CAS  PubMed  Google Scholar 

  86. Hussain MM, Fatma S, Pan X, Iqbal J (2005) Intestinal lipoprotein assembly. Curr Opin Lipidol 16:281–285

    CAS  PubMed  Google Scholar 

  87. Hussain MM (2000) A proposed model for the assembly of chylomicrons. Atherosclerosis 148:1–15

    CAS  PubMed  Google Scholar 

  88. Goldberg IJ, Kako Y, Lutz EP (2000) Responses to eating: lipoproteins, lipolytic products and atherosclerosis. Curr Opin Lipidol 11:235–241

    CAS  PubMed  Google Scholar 

  89. Institute of Medicine of the National Academies Food and Nutrition Board (2005) Chapter 8: dietary fats: total fat and fatty acids dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). The National Academies Press, Washington, D.C., pp 429–432

    Google Scholar 

  90. Tornoci L, Scheraldi CA, Li X, Ide H, Goldberg IJ, Le NA (1993) Abnormal activation of lipoprotein lipase by non-equilibrating apoC-II: further evidence for the presence of non-equilibrating pools of apolipoproteins C-II and C-III in plasma lipoproteins. J Lipid Res 34:1793–1803

    CAS  PubMed  Google Scholar 

  91. Bukberg PR, Le NA, Ginsberg HN, Gibson JC, Rubinstein A, Brown WV (1985) Evidence for non-equilibrating pools of apolipoprotein C-III in plasma lipoproteins. J Lipid Res 26:1047–1057

    CAS  PubMed  Google Scholar 

  92. Boyle KE, Phillips MC, Lund-Katz S (1999) Kinetics and mechanism of exchange of apolipoprotein C-III molecules from very low density lipoprotein particles. Biochim Biophys Acta 1430:302–312

    CAS  PubMed  Google Scholar 

  93. Havel RJ, Kane JP, Kashyap ML (1973) Interchange of apolipoproteins between chylomicrons and high density lipoproteins during alimentary lipemia in man. J Clin Invest 52:32–38

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Rubinstein A, Gibson JC, Ginsberg HN, Brown WV (1986) In vitro metabolism of apolipoprotein E. Biochim Biophys Acta 879:355–361

    CAS  PubMed  Google Scholar 

  95. van’t Hooft F, Havel RJ (1981) Metabolism of chromatographically separated rat serum lipoproteins specifically labeled with 125I-apolipoprotein E. J Biol Chem 256:3963–3968

    Google Scholar 

  96. Blum CB (1982) Dynamics of apolipoprotein E metabolism in humans. J Lipid Res 23:1308–1316

    CAS  PubMed  Google Scholar 

  97. Gregg RE, Zech LA, Schaefer EJ, Brewer HB Jr (1984) Apolipoprotein E metabolism in normolipoproteinemic human subjects. J Lipid Res 25:1167–1176

    CAS  PubMed  Google Scholar 

  98. Ginsberg HN, Zhang YL, Hernandez-Ono A (2005) Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res 36:232–240

    CAS  PubMed  Google Scholar 

  99. Brown WV, Baginsky ML (1972) Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. Biochem Biophys Res Commun 46:375–382

    CAS  PubMed  Google Scholar 

  100. Krauss RM, Herbert PN, Levy RI, Fredrickson DS (1973) Further observations on the activation and inhibition of lipoprotein lipase by apolipoproteins. Circ Res 33:403–411

    CAS  PubMed  Google Scholar 

  101. Wang CS, McConathy WJ, Kloer HU, Alaupovic P (1985) Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 75:384–390

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Maeda N, Li H, Lee D, Oliver P, Quarfordt SH, Osada J (1994) Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J Biol Chem 269:23610–23616

    CAS  PubMed  Google Scholar 

  103. Kinnunen PK, Jackson RL, Smith LC, Gotto AM Jr, Sparrow JT (1977) Activation of lipoprotein lipase by native and synthetic fragments of human plasma apolipoprotein C-II. Proc Natl Acad Sci USA 74:4848–4851

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jong MC, Hofker MH, Havekes LM (1999) Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 19:472–484

    CAS  PubMed  Google Scholar 

  105. Le NA, Gibson JC, Ginsberg HN (1988) Independent regulation of plasma apolipoprotein C-II and C-III concentrations in very low density and high density lipoproteins: implications for the regulation of the catabolism of these lipoproteins. J Lipid Res 29:669–677

    CAS  PubMed  Google Scholar 

  106. Ito Y, Azrolan N, O’Connell A, Walsh A, Breslow JL (1990) Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 249:790–793

    CAS  PubMed  Google Scholar 

  107. Lewis GF, Rader DJ (2005) New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 96:1221–1232

    CAS  PubMed  Google Scholar 

  108. Mahley RW, Ji ZS (1999) Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 40:1–16

    CAS  PubMed  Google Scholar 

  109. Ravelli AM (1995) Gastrointestinal function in chronic renal failure. Pediatr Nephrol 9:756–762

    CAS  PubMed  Google Scholar 

  110. Drukker A, Levy E, Bronza N, Stankiewicz H, Goldstein R (1982) Impaired intestinal fat absorption in chronic renal failure. Nephron 30:154–160

    CAS  PubMed  Google Scholar 

  111. Aguilera A, Bajo MA, Espinoza M, Olveira A, Paiva AM, Codoceo R, Garca P, Sanchez S, Celadilla O, Castro MJ, Selgas R (2003) Gastrointestinal and pancreatic function in peritoneal dialysis patients: their relationship with malnutrition and peritoneal membrane abnormalities. Am J Kidney Dis 42:787–796

    PubMed  Google Scholar 

  112. Charlesworth JA, Kriketos AD, Jones JE, Erlich JH, Campbell LV, Peake PW (2005) Insulin resistance and postprandial triglyceride levels in primary renal disease. Metabolism 54:821–828

    CAS  PubMed  Google Scholar 

  113. Weintraub M, Burstein A, Rassin T, Liron M, Ringel Y, Cabili S, Blum M, Peer G, Iaina A (1992) Severe defect in clearing postprandial chylomicron remnants in dialysis patients. Kidney Int 42:1247–1252

    CAS  PubMed  Google Scholar 

  114. Nestel PJ, Fidge NH, Tan MH (1982) Increased lipoprotein-remnant formation in chronic renal failure. N Engl J Med 307:329–333

    CAS  PubMed  Google Scholar 

  115. Wilson DE, Chan IF, Cheung AK, Dutz W, Buchi KN (1985) Retinyl ester retention in chronic renal failure. Further evidence for a defect in chylomicron remnant metabolism. Atherosclerosis 57:189–197

    CAS  PubMed  Google Scholar 

  116. Xiang SQ, Cianflone K, Kalant D, Sniderman AD (1999) Differential binding of triglyceride-rich lipoproteins to lipoprotein lipase. J Lipid Res 40:1655–1663

    CAS  PubMed  Google Scholar 

  117. Reaven GM, Swenson RS, Sanfelippo ML (1980) An inquiry into the mechanism of hypertriglyceridemia in patients with chronic renal failure. Am J Clin Nutr 33:1476–1484

    CAS  PubMed  Google Scholar 

  118. Wetterau JR, Aggerbeck LP, Bouma ME, Eisenberg C, Munck A, Hermier M, Schmitz J, Gay G, Rader DJ, Gregg RE (1992) Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 258:999–1001

    CAS  PubMed  Google Scholar 

  119. Whitfield AJ, Barrett PH, van Bockxmeer FM, Burnett JR (2004) Lipid disorders and mutations in the APOB gene. Clin Chem 50:1725–1732

    CAS  PubMed  Google Scholar 

  120. Ginsberg HN, Zhang YL, Hernandez-Ono A (2006) Metabolic syndrome: focus on dyslipidemia. Obesity (Silver Spring) 14(Suppl 1):41S–49S

    CAS  Google Scholar 

  121. Takahashi S, Sakai J, Fujino T, Miyamori I, Yamamoto TT (2003) The very low density lipoprotein (VLDL) receptor-a peripheral lipoprotein receptor for remnant lipoproteins into fatty acid active tissues. Mol Cell Biochem 248:121–127

    CAS  PubMed  Google Scholar 

  122. Packard CJ, Munro A, Lorimer AR, Gotto AM, Shepherd J (1984) Metabolism of apolipoprotein B in large triglyceride-rich very low density lipoproteins of normal and hypertriglyceridemic subjects. J Clin Invest 74:2178–2192

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Berneis KK, Krauss RM (2002) Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res 43:1363–1379

    CAS  PubMed  Google Scholar 

  124. Veniant MM, Zlot CH, Walzem RL, Pierotti V, Driscoll R, Dichek D, Herz J, Young SG (1998) Lipoprotein clearance mechanisms in LDL receptor-deficient ‘Apo-B48-only’ and ‘Apo-B100-only’ mice. J Clin Invest 102:1559–1568

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Kowal RC, Herz J, Goldstein JL, Esser V, Brown MS (1989) Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Proc Natl Acad Sci USA 86:5810–5814

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Beisiegel U, Weber W, Ihrke G, Herz J, Stanley KK (1989) The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature 341:162–164

    CAS  PubMed  Google Scholar 

  127. Llorente-Cortes V, Martinez-Gonzalez J, Badimon L (2000) LDL receptor-related protein mediates uptake of aggregated LDL in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 20:1572–1579

    CAS  PubMed  Google Scholar 

  128. Marz W, Beckmann A, Scharnagl H, Siekmeier R, Mondorf U, Held I, Schneider W, Preissner KT, Curtiss LK, Gross W, Huttinger M (1993) Heterogeneous lipoprotein (a) size isoforms differ by their interaction with the low density lipoprotein receptor and the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. FEBS Lett 325:271–275

    CAS  PubMed  Google Scholar 

  129. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47

    CAS  PubMed  Google Scholar 

  130. Kimak E, Ksiazek A, Solski J (2006) Disturbed lipoprotein composition in non-dialyzed, hemodialysis, continuous ambulatory peritoneal dialysis and post-transplant patients with chronic renal failure. Clin Chem Lab Med 44:64–69

    CAS  PubMed  Google Scholar 

  131. Kimak E, Solski J (2002) ApoA- and apoB-containing lipoproteins and Lp(a) concentration in non-dialyzed patients with chronic renal failure. Ren Fail 24:485–492

    CAS  PubMed  Google Scholar 

  132. Horkko S, Huttunen K, Laara E, Kervinen K, Kesaniemi YA (1994) Effects of three treatment modes on plasma lipids and lipoproteins in uraemic patients. Ann Med 26:271–282

    CAS  PubMed  Google Scholar 

  133. Horowitz BS, Goldberg IJ, Merab J, Vanni TM, Ramakrishnan R, Ginsberg HN (1993) Increased plasma and renal clearance of an exchangeable pool of apolipoprotein A-I in subjects with low levels of high density lipoprotein cholesterol. J Clin Invest 91:1743–1752

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  135. Senti M, Pedro-Botet J, Nogues X, Rubies-Prat J (1991) Influence of intermediate-density lipoproteins on the accuracy of the Friedewald formula. Clin Chem 37:1394–1397

    CAS  PubMed  Google Scholar 

  136. Rajman I, Harper L, McPake D, Kendall MJ, Wheeler DC (1998) Low-density lipoprotein subfraction profiles in chronic renal failure. Nephrol Dial Transplant 13:2281–2287

    CAS  PubMed  Google Scholar 

  137. Alabakovska SB, Todorova BB, Labudovic DD, Tosheska KN (2002) LDL and HDL subclass distribution in patients with end-stage renal diseases. Clin Biochem 35:211–216

    CAS  PubMed  Google Scholar 

  138. Massy ZA, Nguyen-Khoa T (2002) Oxidative stress and chronic renal failure: markers and management. J Nephrol 15:336–341

    CAS  PubMed  Google Scholar 

  139. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, Himmelfarb J (2004) Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 65:1009–1016

    PubMed  Google Scholar 

  140. Castilla P, Echarri R, Davalos A, Cerrato F, Ortega H, Teruel JL, Lucas MF, Gomez-Coronado D, Ortuno J, Lasuncion MA (2006) Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am J Clin Nutr 84:252–262

    CAS  PubMed  Google Scholar 

  141. Holvoet P, Jenny NS, Schreiner PJ, Tracy RP, Jacobs DR (2006) The relationship between oxidized LDL and other cardiovascular risk factors and subclinical CVD in different ethnic groups: the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis DOI: https://doi.org/10.1016/j.atherosclerosis.2006.08.002

    CAS  PubMed  Google Scholar 

  142. Packard CJ (2006) Small dense low-density lipoprotein and its role as an independent predictor of cardiovascular disease. Curr Opin Lipidol 17:412–417

    CAS  PubMed  Google Scholar 

  143. Senti M, Romero R, Pedro-Botet J, Pelegri A, Nogues X, Rubies-Prat J (1992) Lipoprotein abnormalities in hyperlipidemic and normolipidemic men on hemodialysis with chronic renal failure. Kidney Int 41:1394–1399

    CAS  PubMed  Google Scholar 

  144. Pattnaik NM, Zilversmit DB (1979) Interaction of cholesteryl ester exchange protein with human plasma lipoproteins and phospholipid vesicles. J Biol Chem 254:2782–2786

    CAS  PubMed  Google Scholar 

  145. Tall AR (1993) Plasma cholesteryl ester transfer protein. J Lipid Res 34:1255–1274

    CAS  PubMed  Google Scholar 

  146. Zannis VI, Chroni A, Krieger M (2006) Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med 84:276–294

    CAS  PubMed  Google Scholar 

  147. Jimi S, Uesugi N, Saku K, Itabe H, Zhang B, Arakawa K, Takebayashi S (1999) Possible induction of renal dysfunction in patients with lecithin:cholesterol acyltransferase deficiency by oxidized phosphatidylcholine in glomeruli. Arterioscler Thromb Vasc Biol 19:794–801

    CAS  PubMed  Google Scholar 

  148. Santamarina-Fojo S, Hoeg JM, Assmann G, Brewer HB Jr (2001) Lecithin cholesterol acyltransferase deficiency and fish eye disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, pp 2817–2833

  149. Jessup W, Gelissen IC, Gaus K, Kritharides L (2006) Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol 17:247–257

    CAS  PubMed  Google Scholar 

  150. Zelcer N, Tontonoz P (2006) Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 116:607–614

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang N, Ranalletta M, Matsuura F, Peng F, Tall AR (2006) LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL. Arterioscler Thromb Vasc Biol 26:1310–1316

    CAS  PubMed  Google Scholar 

  152. Saku K, Reddy GS, Hynd BA, Kashyap ML (1984) Renal handling of high-density lipoproteins by isolated perfused kidneys. Metabolism 33:432–438

    CAS  PubMed  Google Scholar 

  153. Peterson DR, Hjelle JT, Carone FA, Moore PA (1984) Renal handling of plasma high density lipoprotein. Kidney Int 26:411–421

    CAS  PubMed  Google Scholar 

  154. Barth JL, Argraves WS (2001) Cubilin and megalin: partners in lipoprotein and vitamin metabolism. Trends Cardiovasc Med 11:26–31

    CAS  PubMed  Google Scholar 

  155. Duval F, Frommherz K, Atger V, Drueke T, Lacour B (1989) Influence of end-stage renal failure on concentrations of free apolipoprotein A-1 in serum. Clin Chem 35:963–966

    CAS  PubMed  Google Scholar 

  156. Neary RH, Gowland E (1988) The effect of renal failure and haemodialysis on the concentration of free apolipoprotein A-1 in serum and the implications for the catabolism of high-density lipoproteins. Clin Chim Acta 171:239–245

    CAS  PubMed  Google Scholar 

  157. Okubo K, Ikewaki K, Sakai S, Tada N, Kawaguchi Y, Mochizuki S (2004) Abnormal HDL apolipoprotein A-I and A-II kinetics in hemodialysis patients: a stable isotope study. J Am Soc Nephrol 15:1008–1015

    CAS  PubMed  Google Scholar 

  158. Batista MC, Welty FK, Diffenderfer MR, Sarnak MJ, Schaefer EJ, Lamon-Fava S, Asztalos BF, Dolnikowski GG, Brousseau ME, Marsh JB (2004) Apolipoprotein A-I, B-100, and B-48 metabolism in subjects with chronic kidney disease, obesity, and the metabolic syndrome. Metabolism 53:1255–1261

    CAS  PubMed  Google Scholar 

  159. Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, Stroehla BC (2002) Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol 155:487–495

    PubMed  Google Scholar 

  160. Saito T, Matsunaga A, Oikawa S (2006) Impact of lipoprotein glomerulopathy on the relationship between lipids and renal diseases. Am J Kidney Dis 47:199–211

    CAS  PubMed  Google Scholar 

  161. Zambon A, Deeb SS, Hokanson JE, Brown BG, Brunzell JD (1998) Common variants in the promoter of the hepatic lipase gene are associated with lower levels of hepatic lipase activity, buoyant LDL, and higher HDL2 cholesterol. Arterioscler Thromb Vasc Biol 18:1723–1729

    CAS  PubMed  Google Scholar 

  162. Olivier M, Wang X, Cole R, Gau B, Kim J, Rubin EM, Pennacchio LA (2004) Haplotype analysis of the apolipoprotein gene cluster on human chromosome 11. Genomics 83:912–923

    CAS  PubMed  Google Scholar 

  163. Pennacchio LA, Olivier M, Hubacek JA, Krauss RM, Rubin EM, Cohen JC (2002) Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet 11:3031–3038

    CAS  PubMed  Google Scholar 

  164. Wittrup HH, Nordestgaard BG, Steffensen R, Jensen G, Tybjaerg-Hansen A (2002) Effect of gender on phenotypic expression of the S447X mutation in LPL: the Copenhagen City Heart Study. Atherosclerosis 165:119–126

    CAS  PubMed  Google Scholar 

  165. Clee SM, Zwinderman AH, Engert JC, Zwarts KY, Molhuizen HO, Roomp K, Jukema JW, van Wijland M, van Dam M, Hudson TJ, Brooks-Wilson A, Genest J Jr, Kastelein JJ, Hayden MR (2001) Common genetic variation in ABCA1 is associated with altered lipoprotein levels and a modified risk for coronary artery disease. Circulation 103:1198–1205

    CAS  PubMed  Google Scholar 

  166. Bagdade JD, Porte D, Bierman EL (1968) Hypertriglyceridemia. A metabolic consequence of chronic renal failure. N Engl J Med 279:181–185

    CAS  PubMed  Google Scholar 

  167. Cheung AK, Parker CJ, Ren K, Iverius PH (1996) Increased lipase inhibition in uremia: identification of pre-beta-HDL as a major inhibitor in normal and uremic plasma. Kidney Int 49:1360–1371

    CAS  PubMed  Google Scholar 

  168. Arnadottir M, Dallongeville J, Fruchart JC, Nilsson-Ehle P (1996) Very-low-density lipoprotein of uremic patients is a poor substrate for bovine lipoprotein lipase in vitro. Metabolism 45:686–690

    CAS  PubMed  Google Scholar 

  169. Cattran DC, Fenton SS, Wilson DR, Steiner G (1976) Defective triglyceride removal in lipemia associated with peritoneal dialysis and haemodialysis. Ann Intern Med 85:29–33

    CAS  PubMed  Google Scholar 

  170. Chan MK, Varghese Z, Persaud JW, Baillod RA, Moorhead JF (1982) Hyperlipidemia in patients on maintenance hemo- and peritoneal dialysis: the relative pathogenetic roles of triglyceride production and triglyceride removal. Clin Nephrol 17:183–190

    CAS  PubMed  Google Scholar 

  171. Chan PC, Persaud J, Varghese Z, Kingstone D, Baillod RA, Moorhead JF (1989) Apolipoprotein B turnover in dialysis patients: its relationship to pathogenesis of hyperlipidemia. Clin Nephrol 31:88–95

    CAS  PubMed  Google Scholar 

  172. Horkko S, Huttunen K, Kesaniemi YA (1995) Decreased clearance of low-density lipoprotein in uremic patients under dialysis treatment. Kidney Int 47:1732–1740

    CAS  PubMed  Google Scholar 

  173. Russell GI, Davies TG, Walls J (1980) Evaluation of the intravenous fat tolerance test in chronic renal disease. Clin Nephrol 13:282–286

    CAS  PubMed  Google Scholar 

  174. Norbeck HE, Rossner S (1982) Intravenous fat tolerance test with Intralipid in chronic renal failure. Acta Med Scand 211:69–74

    CAS  PubMed  Google Scholar 

  175. Prinsen BH, Rabelink TJ, Romijn JA, Bisschop PH, de Barse MM, de Boer J, van Haeften TW, Barrett PH, Berger R, de Sain-van der Velden MG (2004) A broad-based metabolic approach to study VLDL apoB100 metabolism in patients with ESRD and patients treated with peritoneal dialysis. Kidney Int 65:1064–1075

    CAS  PubMed  Google Scholar 

  176. Aalto-Setala K, Fisher EA, Chen X, Chajek-Shaul T, Hayek T, Zechner R, Walsh A, Ramakrishnan R, Ginsberg HN, Breslow JL (1992) Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles. J Clin Invest 90:1889–1900

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Shelburne FA, Quarfordt SH (1974) A new apoprotein of human plasma very low density lipoproteins. J Biol Chem 249:1428–1433

    CAS  PubMed  Google Scholar 

  178. van Barlingen HH, de Jong H, Erkelens DW, de Bruin TW (1996) Lipoprotein lipase-enhanced binding of human triglyceride-rich lipoproteins to heparan sulfate: modulation by apolipoprotein E and apolipoprotein C. J Lipid Res 37:754–763

    PubMed  Google Scholar 

  179. McConathy WJ, Gesquiere JC, Bass H, Tartar A, Fruchart JC, Wang CS (1992) Inhibition of lipoprotein lipase activity by synthetic peptides of apolipoprotein C-III. J Lipid Res 33:995–1003

    CAS  PubMed  Google Scholar 

  180. Ginsberg HN, Le NA, Goldberg IJ, Gibson JC, Rubinstein A, Wang-Iverson P, Norum R, Brown WV (1986) Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J Clin Invest 78:1287–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Curry MD, McConathy WJ, Fesmire JD, Alaupovic P (1980) Quantitative determination of human apolipoprotein C-III by electroimmunoassay. Biochim Biophys Acta 617:503–513

    CAS  PubMed  Google Scholar 

  182. Barter PJ, Brewer HB Jr, Chapman MJ, Hennekens CH, Rader DJ, Tall AR (2003) Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 23:160–167

    CAS  PubMed  Google Scholar 

  183. Hayek T, Masucci-Magoulas L, Jiang X, Walsh A, Rubin E, Breslow JL, Tall AR (1995) Decreased early atherosclerotic lesions in hypertriglyceridemic mice expressing cholesteryl ester transfer protein transgene. J Clin Invest 96:2071–2074

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Hampers CL, Soeldner JS, Doak PB, Merrill JP (1966) Effect of chronic renal failure and hemodialysis on carbohydrate metabolism. J Clin Invest 45:1719–1731

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Horton ES, Johnson C, Lebovitz HE (1968) Carbohydrate metabolism in uremia. Ann Intern Med 68:63–74

    CAS  PubMed  Google Scholar 

  186. Westervelt FB Jr, Schreiner GE (1962) The carbohydrate intolerance of uremic patients. Ann Intern Med 57:266–276

    CAS  PubMed  Google Scholar 

  187. Perkoff GT, Thomas CL, Newton JD, Sellman JC, Tyler FH (1958) Mechanism of impaired glucose tolerance in uremia and experimental hyperazotemia. Diabetes 7:375–383

    CAS  PubMed  Google Scholar 

  188. Mak RH, DeFronzo RA (1992) Glucose and insulin metabolism in uremia. Nephron 61:377–382

    CAS  PubMed  Google Scholar 

  189. Alvestrand A (1997) Carbohydrate and insulin metabolism in renal failure. Kidney Int Suppl 62:S48–S52

    CAS  PubMed  Google Scholar 

  190. Bagdade JD (1968) Lipemia, a sequela of chronic renal failure and hemodialysis. Am J Clin Nutr 21:426–429

    CAS  PubMed  Google Scholar 

  191. Bagdade JD (1970) Uremic lipemia. An unrecognized abnormality in triglyceride production and removal. Arch Intern Med 126:875–881

    CAS  PubMed  Google Scholar 

  192. Ginsberg HN (2000) Insulin resistance and cardiovascular disease. J Clin Invest 106:453–458

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Steinberger J, Moorehead C, Katch V, Rocchini AP (1995) Relationship between insulin resistance and abnormal lipid profile in obese adolescents. J Pediatr 126:690–695

    CAS  PubMed  Google Scholar 

  194. Howard BV (1999) Insulin resistance and lipid metabolism. Am J Cardiol 84:28J–32J

    CAS  PubMed  Google Scholar 

  195. Mak RH, Haycock GB, Chantler C (1994) Insulin and growth in chronic renal failure. Pediatr Nephrol 8:309–312

    CAS  PubMed  Google Scholar 

  196. Mak RH (1995) Insulin secretion and growth failure in uremia. Pediatr Res 38:379–383

    CAS  PubMed  Google Scholar 

  197. Alvestrand A, Mujagic M, Wajngot A, Efendic S (1989) Glucose intolerance in uremic patients: the relative contributions of impaired beta-cell function and insulin resistance. Clin Nephrol 31:175–183

    CAS  PubMed  Google Scholar 

  198. Sadur CN, Eckel RH (1982) Insulin stimulation of adipose tissue lipoprotein lipase. Use of the euglycemic clamp technique. J Clin Invest 69:1119–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Lithell H, Boberg J, Hellsing K, Lundqvist G, Vessby B (1978) Lipoprotein-lipase activity in human skeletal muscle and adipose tissue in the fasting and the fed states. Atherosclerosis 30:89–94

    CAS  PubMed  Google Scholar 

  200. Farese RV Jr, Yost TJ, Eckel RH (1991) Tissue-specific regulation of lipoprotein lipase activity by insulin/glucose in normal-weight humans. Metabolism 40:214–216

    CAS  PubMed  Google Scholar 

  201. Zechner R, Strauss JG, Haemmerle G, Lass A, Zimmermann R (2005) Lipolysis: pathway under construction. Curr Opin Lipidol 16:333–340

    CAS  PubMed  Google Scholar 

  202. Zimmermann R, Strauss JG, Haemmerle G, SchoiswohlG, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    CAS  PubMed  Google Scholar 

  203. Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, Kratky D, Wagner EF, Klingenspor M, Hoefler G, Zechner R (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737

    CAS  PubMed  Google Scholar 

  204. Kraemer FB, Shen WJ (2002) Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res 43:1585–1594

    CAS  PubMed  Google Scholar 

  205. Li, WW, Dammerman MM, Smith JD, Metzger S, Breslow JL, Leff T (1995) Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia. J Clin Invest 96:2601–2605

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Dammerman M, Sandkuijl LA, Halaas JL, Chung W, Breslow JL (1993) An apolipoprotein CIII haplotype protective against hypertriglyceridemia is specified by promoter and 3′ untranslated region polymorphisms. Proc Natl Acad Sci USA 90:4562–4566

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Chen M, Breslow JL, Li W, Leff T (1994) Transcriptional regulation of the apoC-III gene by insulin in diabetic mice: correlation with changes in plasma triglyceride levels. J Lipid Res 35:1918–1924

    CAS  PubMed  Google Scholar 

  208. Altomonte J, Cong L, Harbaran S, Richter A, Xu J, Meseck M, Dong HH (2004) Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J Clin Invest 114:1493–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Joven J, Villabona C, Vilella E, Masana L, Alberti R, Valles M (1990) Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome (see comments). N Engl J Med 323:579–584

    CAS  PubMed  Google Scholar 

  210. Mattock MB, Cronin N, Cavallo-Perin P, Idzior-Walus B, Penno G, Bandinelli S, Standl E, Kofinis A, Fuller JH (2001) Plasma lipids and urinary albumin excretion rate in Type 1 diabetes mellitus: the EURODIAB IDDM Complications Study. Diabet Med 18:59–67

    CAS  PubMed  Google Scholar 

  211. Choi HS, Sung KC, Lee KB (2006) The prevalence and risk factors of microalbuminuria in normoglycemic, normotensive adults. Clin Nephrol 65:256–261

    CAS  PubMed  Google Scholar 

  212. Cirillo M, Senigalliesi L, Laurenzi M, Alfieri R, Stamler J, Stamler R, Panarelli W, De Santo NG (1998) Microalbuminuria in nondiabetic adults: relation of blood pressure, body mass index, plasma cholesterol levels, and smoking: the Gubbio Population Study. Arch Intern Med 158:1933–1939

    CAS  PubMed  Google Scholar 

  213. Choi HS, Ryu SH, Lee KB (2006) The relationship of microalbuminuria with metabolic syndrome. Nephron Clin Pract 104:c85–c93

    CAS  PubMed  Google Scholar 

  214. Korbet SM, Schwartz MM, Lewis EJ (1994) Primary focal segmental glomerulosclerosis: clinical course and response to therapy. Am J Kidney Dis 23:773–783

    CAS  PubMed  Google Scholar 

  215. Ritz E, Orth SR (1999) Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 341:1127–1133

    CAS  PubMed  Google Scholar 

  216. Campese VM, Bianchi S, Bigazzi R (1999) Association between hyperlipidemia and microalbuminuria in essential hypertension. Kidney Int Suppl 71:S10–S13

    CAS  PubMed  Google Scholar 

  217. Klahr S, Breyer JA, Beck GJ, Dennis VW, Hartman JA, Roth D, Steinman TI, Wang SR, Yamamoto ME (1995) Dietary protein restriction, blood pressure control, and the progression of polycystic kidney disease. Modification of Diet in Renal Disease Study Group. J Am Soc Nephrol 5:2037–2047

    CAS  PubMed  Google Scholar 

  218. Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, Jensen G, Clausen P, Scharling H, Appleyard M, Jensen JS (2004) Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation 110:32–35

    CAS  PubMed  Google Scholar 

  219. Klausen KP, Scharling H, Jensen JS (2006) Very low level of microalbuminuria is associated with increased risk of death in subjects with cardiovascular or cerebrovascular diseases. J Intern Med 260:231–237

    CAS  PubMed  Google Scholar 

  220. Basi S, Lewis JB (2006) Microalbuminuria as a target to improve cardiovascular and renal outcomes. Am J Kidney Dis 47:927–946

    CAS  PubMed  Google Scholar 

  221. Kopple JD (2005) The phenomenon of altered risk factor patterns or reverse epidemiology in persons with advanced chronic kidney failure. Am J Clin Nutr 81:1257–1266

    CAS  PubMed  Google Scholar 

  222. Liu Y, Coresh J, Eustace JA, Longenecker JC, Jaar B, Fink NE, Tracy RP, Powe NR, Klag MJ (2004) Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition. JAMA 291:451–459

    CAS  PubMed  Google Scholar 

  223. Shepherd J (2006) Who should receive a statin these days? Lessons from recent clinical trials. J Intern Med 260:305–319

    CAS  PubMed  Google Scholar 

  224. Collins R, Armitage J, Parish S, Sleigh P, Peto R (2003) MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361:2005–2016

    PubMed  Google Scholar 

  225. Tonelli M, Keech A, Shepherd J, Sacks F, Tonkin A, Packard C, Pfeffer M, Simes J, Isles C, Furberg C, West M, Craven T, Curhan G (2005) Effect of pravastatin in people with diabetes and chronic kidney disease. J Am Soc Nephrol 16:3748–3754

    CAS  PubMed  Google Scholar 

  226. Wanner C, Krane V, Marz W, Olschewski M, Mann JF, Ruf G, Ritz E (2005) Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med 353:238–248

    CAS  PubMed  Google Scholar 

  227. Isbel NM, Haluska B, Johnson DW, Beller E, Hawley C, Marwick TH (2006) Increased targeting of cardiovascular risk factors in patients with chronic kidney disease does not improve atheroma burden or cardiovascular function. Am Heart J 151:745–753

    PubMed  Google Scholar 

  228. Landray M, Baigent C, Leaper C, Adu D, Altmann P, Armitage J, Ball S, Baxter A, Blackwell L, Cairns HS, Carr S, Collins R, Kourellias K, Rogerson M, Scoble JE, Tomson CR, Warwick G, Wheeler DC (2006) The second United Kingdom Heart and Renal Protection (UK-HARP-II) Study: a randomized controlled study of the biochemical safety and efficacy of adding ezetimibe to simvastatin as initial therapy among patients with CKD. Am J Kidney Dis 47:385–395

    CAS  PubMed  Google Scholar 

  229. Kavey RE, Allada V, Daniels SR, Hayman LL, McCrindle BW, Newburger JW, Parekh RS, Steinberger J (2006) Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: endorsed by the American Academy of Pediatrics. Circulation 114:2710–2738

    PubMed  Google Scholar 

  230. Wentzel JJ, Aguiar SH, Fayad ZA (2003) Vascular MRI in the diagnosis and therapy of the high risk atherosclerotic plaque. J Interv Cardiol 16:129–142

    PubMed  Google Scholar 

  231. Belay B, Belamarich PF, Tom-Revzon C (2007) The use of statins in pediatrics: knowledge base, limitations, and future directions. Pediatrics 119:370–380

    PubMed  Google Scholar 

  232. Samuelsson O, Attman PO, Knight-Gibson C, Kron B, Larsson R, Mulec H, Weiss L, Alaupovic P (1997) Effect of gemfibrozil on lipoprotein abnormalities in chronic renal insufficiency: a controlled study in human chronic renal disease. Nephron 75:286–294

    CAS  PubMed  Google Scholar 

  233. Levin A, Duncan L, Djurdjev O, Shapiro RJ, Frohlich J, Belanger A, Dumas R, Ross S (2000) A randomized placebo-controlled double-blind trial of lipid-lowering strategies in patients with renal insufficiency: diet modification with or without fenofibrate. Clin Nephrol 53:140–146

    CAS  PubMed  Google Scholar 

  234. Nishizawa Y, Shoji T, Nishitani H, Yamakawa M, Konishi T, Kawasaki K, Morii H (1993) Hypertriglyceridemia and lowered apolipoprotein C-II/C-III ratio in uremia: effect of a fibric acid, clinofibrate. Kidney Int 44:1352–1359

    CAS  PubMed  Google Scholar 

  235. Gervois P, Torra IP, Fruchart JC, Staels B (2000) Regulation of lipid and lipoprotein metabolism by PPAR activators. Clin Chem Lab Med 38:3–11

    CAS  PubMed  Google Scholar 

  236. AHFS Drug Information® (2006) In: McEvoy G (ed) STAT!Ref online electronic medical library. American Society of Health-System Pharmacists, Inc., Bethesda, MD

    Google Scholar 

  237. Syvanne M, Whittall RA, Turpeinen U, Nieminen MS, Frick MH, Kesaniemi YA, Pasternack A, Humphries SE, Taskinen MR (2004) Serum homocysteine concentrations, gemfibrozil treatment, and progression of coronary atherosclerosis. Atherosclerosis 172:267–272

    CAS  PubMed  Google Scholar 

  238. Elisaf M (2002) Effects of fibrates on serum metabolic parameters. Curr Med Res Opin 18:269–276

    CAS  PubMed  Google Scholar 

  239. Davis RA (1999) Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver. Biochim Biophys Acta 1440:1–31

    CAS  PubMed  Google Scholar 

  240. Harris WS, Bulchandani D (2006) Why do omega-3 fatty acids lower serum triglycerides? Curr Opin Lipidol 17:387–393

    CAS  PubMed  Google Scholar 

  241. Davidson MH (2006) Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am J Cardiol 98:27i–33i

    CAS  PubMed  Google Scholar 

  242. Harris WS, Rothrock DW, Fanning A, Inkeles SB, Goodnight SH Jr, Illingworth DR, Connor WE (1990) Fish oils in hypertriglyceridemia: a dose-response study. Am J Clin Nutr 51:399–406

    CAS  PubMed  Google Scholar 

  243. Stalenhoef AF, de Graaf J, Wittekoek ME, Bredie SJ, Demacker PN, Kastelein JJ (2000) The effect of concentrated n-3 fatty acids versus gemfibrozil on plasma lipoproteins, low density lipoprotein heterogeneity and oxidizability in patients with hypertriglyceridemia. Atherosclerosis 153:129–138

    CAS  PubMed  Google Scholar 

  244. Bays H (2006) Clinical overview of Omacor: a concentrated formulation of omega-3 polyunsaturated fatty acids. Am J Cardiol 98:71i–76i

    CAS  PubMed  Google Scholar 

  245. Donadio JV, Grande JP (2004) The role of fish oil/omega-3 fatty acids in the treatment of IgA nephropathy. Semin Nephrol 24:225–243

    CAS  PubMed  Google Scholar 

  246. Donadio JV Jr, Bergstralh EJ, Offord KP, Spencer DC, Holley KE (1994) A controlled trial of fish oil in IgA nephropathy. Mayo Nephrology Collaborative Group. N Engl J Med 331:1194–1199

    PubMed  Google Scholar 

  247. Donadio JV Jr, Grande JP, Bergstralh EJ, Dart RA, Larson TS, Spencer DC (1999) The long-term outcome of patients with IgA nephropathy treated with fish oil in a controlled trial. Mayo Nephrology Collaborative Group. J Am Soc Nephrol 10:1772–1777

    CAS  PubMed  Google Scholar 

  248. Donadio JV Jr, Larson TS, Bergstralh EJ, Grande JP (2001) A randomized trial of high-dose compared with low-dose omega-3 fatty acids in severe IgA nephropathy. J Am Soc Nephrol 12:791–799

    CAS  PubMed  Google Scholar 

  249. Ando M, Sanaka T, Nihei H (1999) Eicosapentanoic acid reduces plasma levels of remnant lipoproteins and prevents in vivo peroxidation of LDL in dialysis patients. J Am Soc Nephrol 10:2177–2184

    CAS  PubMed  Google Scholar 

  250. Fiedler R, Mall M, Wand C, Osten B (2005) Short-term administration of omega-3 fatty acids in hemodialysis patients with balanced lipid metabolism. J Ren Nutr 15:253–256

    PubMed  Google Scholar 

  251. Khajehdehi P (2000) Lipid-lowering effect of polyunsaturated fatty acids in hemodialysis patients. J Ren Nutr 10:191–195

    CAS  PubMed  Google Scholar 

  252. Dionisio P, Caramello E, Bergia R, Valenti M, Cornella C, Pagni R, Bajardi P (1994) Atherogenic risk in patients undergoing regular dialysis treatment: improvement of lipid pattern and lipoproteins by polyunsaturated omega-3 fatty acids. Nephrol Dial Transplant 9:458

    CAS  PubMed  Google Scholar 

  253. Donnelly SM, Ali MA, Churchill DN (1992) Effect of n-3 fatty acids from fish oil on hemostasis, blood pressure, and lipid profile of dialysis patients. J Am Soc Nephrol 2:1634–1639

    CAS  PubMed  Google Scholar 

  254. Svensson M, Christensen JH, Solling J, Schmidt EB (2004) The effect of n-3 fatty acids on plasma lipids and lipoproteins and blood pressure in patients with CRF. Am J Kidney Dis 44:77–83

    CAS  PubMed  Google Scholar 

  255. Goren A, Stankiewicz H, Goldstein R, Drukker A (1991) Fish oil treatment of hyperlipidemia in children and adolescents receiving renal replacement therapy. Pediatrics 88:265–268

    CAS  PubMed  Google Scholar 

  256. Mozaffarian D, Rimm EB (2006) Fish intake, contaminants, and human health evaluating the risks and the benefits. JAMA 296:1885–1899

    CAS  PubMed  Google Scholar 

  257. Vanschoonbeek K, Feijge MA, Paquay M, Rosing J, Saris W, Kluft C, Giesen PL, de Maat MP, Heemskerk JW (2004) Variable hypocoagulant effect of fish oil intake in humans: modulation of fibrinogen level and thrombin generation. Arterioscler Thromb Vasc Biol 24:1734–1740

    CAS  PubMed  Google Scholar 

  258. Vanschoonbeek K, de Maat MP, Heemskerk JW (2003) Fish oil consumption and reduction of arterial disease. J Nutr 133:657–660

    CAS  PubMed  Google Scholar 

  259. Hernandez D, Garcia S, Gonzalez A, Rufino M, Salido E, Torres A (2005) Eficacia de los ácidos grasos omega-3 en las enfermedades renales: ¿está justificado su empleo? Nefrologia 25:221–232

    CAS  PubMed  Google Scholar 

  260. Friedman AN, Moe SM, Perkins SM, Li Y, Watkins BA (2006) Fish consumption and omega-3 fatty acid status and determinants in long-term hemodialysis. Am J Kidney Dis 47:1064–1071

    CAS  PubMed  Google Scholar 

  261. K/DOQI, National Kidney Foundation (2000) Clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis 35:S1–140

    Google Scholar 

  262. Furth SL (2005) Growth and nutrition in children with chronic kidney disease. Adv Chronic Kidney Dis 12:366–371

    PubMed  Google Scholar 

  263. Kari JA, Shaw V, Vallance DT, Rees L (1998) Effect of enteral feeding on lipid subfractions in children with chronic renal failure. Pediatr Nephrol 12:401–404

    CAS  PubMed  Google Scholar 

  264. Painter P (2005) Physical functioning in end-stage renal disease patients: update 2005. Hemodial Int 9:218–235

    PubMed  Google Scholar 

  265. Braunlin W, Zhorov E, Guo A, Apruzzese W, Xu Q, Hook P, Smisek DL, Mandeville WH, Holmes-Farley SR (2002) Bile acid binding to sevelamer HCl. Kidney Int 62:611–619

    CAS  PubMed  Google Scholar 

  266. Pieper AK, Haffner D, Hoppe B, Dittrich K, Offner G, Bonzel KE, John U, Frund S, Klaus G, Stubinger A, Duker G, Querfeld U (2006) A randomized crossover trial comparing sevelamer with calcium acetate in children with CKD. Am J Kidney Dis 47:625–635

    CAS  PubMed  Google Scholar 

  267. Sarafidis PA, Bakris GL (2006) Protection of the kidney by thiazolidinediones: an assessment from bench to bedside. Kidney Int 70:1223–1233

    CAS  PubMed  Google Scholar 

  268. Brousseau ME, Schaefer EJ, Wolfe ML, Bloedon LT, Digenio AG, Clark RW, Mancuso JP, Rader DJ (2004) Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med 350:1505–1515

    CAS  PubMed  Google Scholar 

  269. Schaefer EJ, Asztalos BF (2006) Cholesteryl ester transfer protein inhibition, high-density lipoprotein metabolism and heart disease risk reduction. Curr Opin Lipidol 17:394–398

    CAS  PubMed  Google Scholar 

  270. Berenson A (2006) Pfizer ends studies on drug for treating heart disease. The New York Times

  271. Mak RH (1998) Metabolic effects of erythropoietin in patients on peritoneal dialysis. Pediatr Nephrol 12:660–665

    CAS  PubMed  Google Scholar 

  272. Mak RH (1998) 1,25-Dihydroxyvitamin D3 corrects insulin and lipid abnormalities in uremia. Kidney Int 53:1353–1357

    CAS  PubMed  Google Scholar 

  273. Mak RH (1999) Effect of metabolic acidosis on hyperlipidemia in uremia. Pediatr Nephrol 13:891–893

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Saland is supported by NIH/NIDDK grant #K23DK071871. Dr. Ginsberg is supported by NIH grants R01 HL55638 and R01 HL73030. The authors thank Dr. Lisa Satlin for her suggestions in preparing this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Saland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saland, J.M., Ginsberg, H.N. Lipoprotein metabolism in chronic renal insufficiency. Pediatr Nephrol 22, 1095–1112 (2007). https://doi.org/10.1007/s00467-007-0467-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-007-0467-5

Keywords

Navigation