Skip to main content

Advertisement

Log in

A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We formulate a variational constitutive framework that accounts for nonlinear viscous behavior of electrically sensitive polymers, specifically Dielectric Elastomers (DEs), under large deformation. DEs are highly viscoelastic and their actuation response is greatly affected in dynamic applications. We used the generalized Maxwell model to represent the viscoelastic response of DE allowing the material to relax with multiple mechanisms. The constitutive updates at each load increment are obtained by minimizing an objective function formulated using the free energy and electrostatic energy of the elastomer, in addition to the viscous dissipation potential of the dashpots in each Maxwell branch. The model is then used to predict the electromechanical instability (EMI) of DE. The electro-elastic response of the DE is verified with available analytical solutions in the literature and then the material parameters are calibrated using experimental data. The model is integrated with finite element software to perform a variety of simulations on different types of electrically driven actuators under various electromechanical loadings. The electromechanical response of the DE and the critical conditions at which EMI occurs were found to be greatly affected by the viscoelasticity. Our model predicts that under a dead load EMI can be avoided if the DE operates at a high voltage rate. Subjected to constant, ramp and cyclic voltage, our model qualitatively predicts responses similar to the ones obtained from the analytical solutions and experimental data available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ask A, Menzel A, Ristinmaa M (2012) Electrostriction in electro-viscoelastic polymers. Mech Mater 50: 9–21

    Article  Google Scholar 

  2. Ball J (1977) Convexity conditions and existence theorems in nonlinear elasticity. Arch Ration Mech Anal 63: 337–403

    Article  MATH  Google Scholar 

  3. Bergstrom J, Boyce M (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46(5): 931–954

    Article  Google Scholar 

  4. Biddiss E, Chau T (2008) Dielectric elastomers as actuators for upper limb prosthetics: challenges and opportunities. Med Eng Phys 30(4): 403–418

    Article  Google Scholar 

  5. Brosseau C, Mdarhri A, Vidal A (2008) Mechanical fatigue and dielectric relaxation of carbon black/polymer composites. J Appl Phys 104(7)

  6. Bustamante R, Dorfmann A, Ogden R (2009) Nonlinear electroelastostatics: a variational framework. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 60(1): 154–177

    Article  MathSciNet  MATH  Google Scholar 

  7. Christensen R (1980) A nonlinear theory of viscoelasticity for application to elastomers. Trans ASME J Appl Mech 47(4): 762–768

    Article  MATH  Google Scholar 

  8. Ciarlet P (1988) Three-dimensional elasticity. Elsevier, Amsterdam

    MATH  Google Scholar 

  9. Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13: 167–178

    Article  MathSciNet  MATH  Google Scholar 

  10. Cuitino A, Ortiz M (1992) A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics. Eng Comput 9: 255–263

    Google Scholar 

  11. Diaconu I, Dorohoi D, Florin T (2006) Electrostriction of a polyurethane elastomer-based polyester. IEEE Sens J 6(4): 876–880

    Article  Google Scholar 

  12. Dorfmann A, Ogden R (2005) Nonlinear electroelasticity. Acta Mech 174(3–4): 167–183

    Article  MATH  Google Scholar 

  13. Drozdov A (1995) A constitutive model in finite viscoelasticity. Rheologica Acta 34(6): 562–577

    Article  Google Scholar 

  14. Eringen AC (1967) Mechanics of continua. Wiley, New York

    MATH  Google Scholar 

  15. Foo C, Cai S, Koh S, Bauer S, Suo Z (2012) Model of dissipative dielectric elastomers. J Appl Phys 111: 034102-1–034102-13

    Google Scholar 

  16. Goulbourne N, Mockensturm E, Frecker M (2005) A nonlinear model for dielectric elastomer membranes. J Appl Mech Trans ASME 72(6): 899–906

    Article  MATH  Google Scholar 

  17. Ha S, Yuan W, Pei Q, Pelrine R, Stanford S (2006) Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Adv Mater 18(7): 887

    Article  Google Scholar 

  18. Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering, 1st edn. Wiley, New York

    MATH  Google Scholar 

  19. Hong W (2011) Modeling viscoelastic dielectrics. J Mech Phys Solids 59(3): 637–650

    Article  MathSciNet  Google Scholar 

  20. Huang J, Li T, Foo C, Zhu J, Clarke D, Suo Z (2012) Giant voltage-actuated deformation of a dielectric elastomer under dead load. Appl Phys Lett 100(041911): 1–4

    Google Scholar 

  21. Johansson C, Robertsson M (2007) Broadband dielectric characterization of a silicone elastomer. J Electron Mater 36(9): 1206–1210

    Article  Google Scholar 

  22. Johlitz M, Steeb H, Diebels S, Chatzouridou A, Batal J, Possart W (2007) Experimental and theoretical investigation of nonlinear viscoelastic polyurethane systems. J Mater Sci 42(23): 9894–9904

    Article  Google Scholar 

  23. Keplinger C, Kaltenbrunner M, Arnold N, Bauer S (2010) Rontgen’s electrode-free elastomer actuators without electromechanical pull-in instability. Proc Natl Acad Sci USA 107(10): 4505–4510

    Article  Google Scholar 

  24. Kofod G, Mc Carthy DN, Krissler J, Lang G, Jordan G (2009) Electroelastic optical fiber positioning with submicrometer accuracy: model and experiment. Appl Phys Lett 94(20): 202901–202903

    Article  Google Scholar 

  25. Koh SJA, Zhao X, Suo Z (2009) Maximal energy that can be converted by a dielectric elastomer generator. Appl Phys Lett 94(26): 262902–262903

    Article  Google Scholar 

  26. Kornbluh R, Pelrine R, Joseph J (1995) Elastomeric dielectric artificial muscle actuators for small robots. Proc Mater Res Soc Symp 600: 119–130

    Article  Google Scholar 

  27. Lee E (1969) Elastic-plastic deformation at finite strains. J Appl Mech 36: 1–6

    Article  MATH  Google Scholar 

  28. Lochmatter P, Kovacs G, Michel S (2007) Characterization of dielectric elastomer actuators based on a hyperelastic film model. Sens Actuators A 135(2): 748–757

    Article  Google Scholar 

  29. McMeeking R, Landis C (2005) Electrostatic forces and stored energy for deformable dielectric materials. J Appl Mech Trans ASME 72(6): 581–590

    Article  MATH  Google Scholar 

  30. Ogden R (1984) Non-linear elastic deformations. Ellis Horwood, Chichester

    Google Scholar 

  31. O’Halloran A, O’Malley F, McHugh P (2008) A review on dielectric elastomer actuators, technology, applications, and challenges. J Appl Phys 104(7)

  32. Ortiz M, Molinari A (1992) Effect of strain-hardening and rate sensitivity on the dynamic growth of a void in a plastic material. J Appl Mech 59: 48–53

    Article  MATH  Google Scholar 

  33. Ortiz M, Stainier L (1999) The variational formulation of viscoplastic constitutive updates. Comput Methods Appl Mech Eng 171(3–4): 419–444

    Article  MathSciNet  MATH  Google Scholar 

  34. Ortiz M, Radovitzky R, Repetto E (2001) The computation of the exponential and logarithmic mappings and their first and second linearizations. Int J Numer Methods Eng 52: 1431–1441

    Article  MathSciNet  MATH  Google Scholar 

  35. Pelrine R, Kornbluh R, Joseph J (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuators A 64(1): 77–85

    Article  Google Scholar 

  36. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454): 836–839

    Article  Google Scholar 

  37. Pelrine R, Kornbluh R, Pei Q, Stanford S, Oh S, Eckerle J, Full R, Rosenthal M, NourMeijer NAE (2002) Dielectric elastomer artificial muscle actuators: toward biomimetic motion. In: Proc SPIE 4695, Smart Structures and Materials, vol 4695, pp 126–137

  38. Plante J, Dubowsky S (2006) Large-scale failure modes of dielectric elastomer actuators. Int J Solids Struct 43: 7727–7751

    Article  MATH  Google Scholar 

  39. Plante J, Dubowsky S (2007) On the performance mechanisms of dielectric elastomer actuators. Sens Actuators A 137(1): 96–109

    Article  Google Scholar 

  40. Qi H, Boyce M (2005) Stress–strain behavior of thermoplastic polyurethanes. Mech Mater 37(8): 817–839

    Article  Google Scholar 

  41. Reffaee A, Nashar DEE, Abd-El-Messieh SL, Nour KNAE (2009) Electrical and mechanical properties of acrylonitrile rubber and linear low density polyethylene composites in the vicinity of the percolation threshold. Mater Des 30(9): 3760–3769

    Article  Google Scholar 

  42. Richards AW, Odegard GM (2010) Constitutive modeling of electrostrictive polymers using a hyperelasticity-based approach. J Appl Mech Trans ASME 77(1): 014502-1–014502-15

    Article  Google Scholar 

  43. Samatham R, Kim K, Dogruer D, Choi H, Konyo M, Madden J, Nakabo Y, Nam J, Su J, Tadokoro S, Yim W, Yamakita M (2007) Active polymers: an overview. In: Kwang KJ, Tadokoro S (eds) Electroactive polymers for robotic applications. Springer, Berlin, p 1

    Chapter  Google Scholar 

  44. Sayed TE, Mota A, Fraternali F, Ortiz M (2008) A variational constitutive model for soft biological tissues. J Biomech 41(7): 1458–1466

    Article  Google Scholar 

  45. Seki M, Sato K, Haga Y, Kobayashi T, Yosomiya R (1995) Electrical properties of an acrylic elastomer liclo4 complex as a polymeric solid electrolyte. Macromol Chem Phys 196(6): 1813–1820

    Article  Google Scholar 

  46. Sidoroff F (1974) Un modèle viscoélastique non linéaire avec configuration intermédiaire. J Mécanique 13: 679–713

    MathSciNet  Google Scholar 

  47. Spathis G, Kontou E (2008) Modeling of nonlinear viscoelasticity at large deformations. J Mater Sci 43(6): 2046–2052

    Article  Google Scholar 

  48. Stark K, Garton C (1955) Electric strength of irradiated polythene. Nature 176: 1225–1226

    Article  Google Scholar 

  49. Suo Z, Zhao X, Greene W (2008) A nonlinear field theory of deformable dielectrics. J Mech Phys Solids 56(2): 467–486

    Article  MathSciNet  MATH  Google Scholar 

  50. Voltairas P, Fotiadis D, Massalas C (2003) A theoretical study of the hyperelasticity of electro-gels. Proc R Soc Lond A 459(2037): 2121–2130

    Article  MATH  Google Scholar 

  51. Weinberg K, Mota A, Ortiz M (2006) A variational constitutive model porous metal plasticity. Comput Mech 37: 142–152

    Article  MATH  Google Scholar 

  52. Wissler M, Mazza E (2005) Modeling and simulation of dielectric elastomer actuators. Smart Mater Struct 14(6): 1396–1402

    Article  Google Scholar 

  53. Wissler M, Mazza E (2005) Modeling of a pre-strained circular actuator made of dielectric elastomers. Sens Actuators A 120(1): 184–192

    Article  Google Scholar 

  54. Wissler M, Mazza E (2007) Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators. Sens Actuators A 134(2): 494–504

    Article  Google Scholar 

  55. Yang E, Frecker M, Mockensturm E (2005) Viscoelastic model of dielectric elastomer membranes. Smart Struct Mater 5759: 82–93

    Google Scholar 

  56. Yang Q, Stainer L, Ortiz M (2006) A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J Mech Phys Solids 54: 401–424

    Article  MathSciNet  MATH  Google Scholar 

  57. Yoseph B (2001) Electroactive polymer (eap) actuators as artificial muscles. SPIE Press, New York

    Google Scholar 

  58. Yoseph B, Qiming Z (2008) Electroactive polymer actuators and sensors. MRS Bull 33(3): 173–181

    Article  Google Scholar 

  59. Zhang X, Lowe C, Wissler M, Jahne B, Kovacs G (2005) Dielectric elastomers in actuator technology. Adv Eng Mater 7(5): 361–367

    Article  Google Scholar 

  60. Zhao X, Suo Z (2008) Electrostriction in elastic dielectrics undergoing large deformation. J Appl Phys 104(12): 123530

    Article  Google Scholar 

  61. Zhao X, Suo Z (2009) Electromechanical instability in semicrystalline polymers. Appl Phys Lett 95(3): 031,904

    Article  Google Scholar 

  62. Zhao X, Suo Z (2010) Theory of dielectric elastomers capable of giant deformation of actuation. Phys Rev Lett 104(17): 178302

    Article  Google Scholar 

  63. Zhao X, Hong W, Suo Z (2007) Electromechanical hysteresis and coexistent states in dielectric elastomers. Phys Rev B 76(13): 134113–134121

    Article  Google Scholar 

  64. Zhao X, Koh S, Suo Z (2011) Nonequilibrium thermodynamics of dielectric elastomers. Int J Appl Mech 3: 203–217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer El Sayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, K.A., Wafai, H. & Sayed, T.E. A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer. Comput Mech 52, 345–360 (2013). https://doi.org/10.1007/s00466-012-0815-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0815-6

Keywords

Navigation