Skip to main content
Log in

Parallel BDD-based monolithic approach for acoustic fluid-structure interaction

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Parallel BDD-based monolithic algorithms for acoustic fluid-structure interaction problems are developed. In a previous study, two schemes, NN-I + CGC-FULL and NN-I + CGC-DIAG, have been proven to be efficient among several BDD-type schemes for one processor. Thus, the parallelization of these schemes is discussed in the present study. These BDD-type schemes consist of the operations of the Schur complement matrix-vector (Sv) product, Neumann-Neumann (NN) preconditioning, and the coarse problem. In the present study, the Sv product and NN preconditioning are parallelized for both schemes, and the parallel implementation of the solid and fluid parts of the coarse problem is considered for NN-I + CGC-DIAG. The results of numerical experiments indicate that both schemes exhibit performances that are almost as good as those of single solid and fluid analyses in the Sv product and NN preconditioning. Moreover, NN-I + CGC-DIAG appears to become more efficient as the problem size becomes large due to the parallel calculation of the coarse problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019

    Article  MATH  Google Scholar 

  2. Morland HJ-P, Ohayon R (1995) Fluid structure interaction: applied numerical methods. Wiley, NY

    Google Scholar 

  3. Mandel J (2002) An iterative substructuring method for coupled fluid-solid acoustic problems. J Comput Phys 176: 1–22

    Article  MathSciNet  Google Scholar 

  4. Ross MR, Felippa CA, Park KC, Sprague MA (2008) Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers: formulation. Comput Methods Appl Mech Eng 197: 3057–3079

    Article  MathSciNet  MATH  Google Scholar 

  5. Park KC, Felippa CA, Ohayon R (2001) Partitioned formulation of internal fluid-structure interaction problems by localized Lagrange multipliers. Comput Methods Appl Mech Eng 190(24–25): 2989–3007

    Article  MATH  Google Scholar 

  6. Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid-structure interaction modeling and performance analysis of the orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285

    Article  MATH  Google Scholar 

  7. Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid-structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307

    Article  MATH  Google Scholar 

  8. Takizawa K, Spielman T, Tezduyar TE (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48: 345–364

    Article  MATH  Google Scholar 

  9. Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid-structure interactions. Arch Comput Methods Eng 19: 125–169

    Article  MathSciNet  Google Scholar 

  10. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid-structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332

    Article  MATH  Google Scholar 

  11. Le Tallec P, Mouro J (2001) Fluid structure interaction with large structural displacements. Comput Methods Appl Mech Eng 190(24-25): 3039–3067

    Article  MATH  Google Scholar 

  12. Matthies HG, Niekamp R, Steindorf J (2006) Algorithms for strong coupling procedures. Comput Methods Appl Mech Eng 195: 2028–2049

    Article  MathSciNet  MATH  Google Scholar 

  13. Michler C, van Brummelen EH, de Borst R (2004) An interface Newton-Krylov solver for fluid-structure interaction. Int J Numer Methods Fluids 47(10-11): 1189–1195

    Article  Google Scholar 

  14. Heil M (2004) An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems. Comput Methods Appl Mech Eng 193: 1–23

    Article  MathSciNet  MATH  Google Scholar 

  15. Ishihara D, Yoshimura S (2005) A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure Poisson equation. Int J Numer Methods Eng 64: 167–203

    Article  MATH  Google Scholar 

  16. Liew KM, Wang WQ, Zhang LX, He XQ (2007) A computational approach for predicting the hydroelasticity of flexible structures based on the pressure Poisson equation. Int J Numer Methods Eng 72: 1560–1583

    Article  MathSciNet  MATH  Google Scholar 

  17. Washio T, Hisada T, Watanabe H, Tezduyar TE (2005) A robust preconditioner for fluid-structure interaction problems. Comput Methods Appl Mech Eng 194: 4027–4047

    Article  MathSciNet  MATH  Google Scholar 

  18. Badia S, Quaini A, Quarteroni A (2008) Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect. Comput Methods Appl Mech Eng 197: 4216–5232

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuttler U, Gee M, Forster Ch, Comerford A, Wall WA (2010) Coupling strategies for biomedical fluid-structure interaction problems. Int J Numer Methods Eng 26: 305–321

    Article  MathSciNet  Google Scholar 

  20. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027

    Article  MathSciNet  MATH  Google Scholar 

  21. Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195(41–43): 5743–5753

    Article  MathSciNet  MATH  Google Scholar 

  22. Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid: structure interaction techniques. Comput Mech 48: 247–267

    Article  MathSciNet  MATH  Google Scholar 

  23. Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900

    Article  MathSciNet  MATH  Google Scholar 

  24. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49

    Article  MATH  Google Scholar 

  25. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142

    Article  MATH  Google Scholar 

  26. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Methods Eng 19: 171–225

    Article  MathSciNet  Google Scholar 

  27. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89

    Article  MATH  Google Scholar 

  28. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48: 377–384

    Article  MATH  Google Scholar 

  29. Minami S, Kawai H, Yoshimura S (2012) A monolithic approach based on Balancing Domain Decomposition method for acoustic fluid-structure interaction. J Appl Mech 79: 010906

    Article  Google Scholar 

  30. Mandel J (1993) Balancing domain decomposition. Commun Numer Meth Eng 9: 233–241

    Article  MathSciNet  MATH  Google Scholar 

  31. Ogino M, Shioya R, Kawai H, Yoshimura S (2005) Seismic response analysis of nuclear pressure vessel model with ADVENTRUE system on the Earth simulator. J Earth Simulator 2: 41–54

    Google Scholar 

  32. Ogino M, Shioya R, Kanayama H (2008) An inexact Balancing preconditioner for large-scale structural analysis. J. Comput. Sci. Tech 2:150–161

    Article  Google Scholar 

  33. Mukaddes AMM, Ogino M, Kanayama H, Shioya R (2006) A scalable Balancing Domain Decomposition based preconditioner for large scale heat transfer problems. JSME Int J 49(2): 533–540

    Article  Google Scholar 

  34. Yagawa G, Shioya R (1994) Parallel finite elements on a massively parallel computer with domain decomposition. Comput Syst Eng 4: 495–503

    Article  Google Scholar 

  35. Shioya R, Yagawa G (2001) Parallel finite element analysis of 100 million DOFs based on the hierarchical domain decomposition method. Trans JSCES 3: 201–206

    Google Scholar 

  36. Ogino M, Shioya R, Kanayama H, Tagami D, Yoshimura S (2003) Parallel elastic finite element analysis using the balancing domain decomposition. Trans Jpn Soc Mech Eng A 69(685): 36–43

    Article  Google Scholar 

  37. Kawai H, Ogino M, Shioya R, Yoshimura S (2010) A parallel skyline solver for coarse grid correction of BDD pre-conditioning in domain decomposition method, Broadband, International Conference on Broadband and Wireless Computing, Communication and Applications

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinobu Yoshimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minami, S., Kawai, H. & Yoshimura, S. Parallel BDD-based monolithic approach for acoustic fluid-structure interaction. Comput Mech 50, 707–718 (2012). https://doi.org/10.1007/s00466-012-0776-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0776-9

Keywords

Navigation