Skip to main content

Advertisement

Log in

Robotic surgery training and performance

Identifying objective variables for quantifying the extent of proficiency

  • Published:
Surgical Endoscopy And Other Interventional Techniques Aims and scope Submit manuscript

Abstract

Background

To understand the process of skill acquisition in robotic surgery and to allow useful real-time feedback to surgeons and trainees in future generations of robotic surgical systems, robotic surgical skills should be determined with objective variables. The aim of this study was to assess skill acquisition through a training protocol, and to identify variables for the quantification of proficiency.

Methods

Seven novice users of the da Vinci Surgical System engaged in 4 weeks of training that involved practicing three bimanual tasks with the system. Seven variables were determined for assessing speed of performance, bimanual coordination, and muscular activation. These values were compared before and after training.

Results

Significant improvements were observed through training in five variables. Bimanual coordination showed differences between the surgical tasks used, whereas muscular activation patterns showed better muscle use through training. The subjects also performed the surgical tasks considerably faster within the first two to three training sessions.

Conclusions

The study objectively demonstrated that the novice users could learn to perform surgical tasks faster and with more consistency, better bimanual dexterity, and better muscular activity utilization. The variables examined showed great promise as objective indicators of proficiency and skill acquisition in robotic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ballantyne GH (2002) Robotic surgery, telerobotic surgery, telepresence, and telemonitoring. Surg Endosc 16: 1389–1402

    Article  PubMed  CAS  Google Scholar 

  2. Ballantyne GH, Moll F (2003) The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery. Surg Clin North Am 83: 1293–1304

    Article  PubMed  Google Scholar 

  3. Bann SD, Khan MS, Darzi A (2003) Measurement of surgical dexterity using motion analysis of simple bench tasks. World J Surg 27: 390–394

    Article  PubMed  Google Scholar 

  4. Basmajian JV, DeLuca CJ (1985) Muscles alive: their functions revealed by electromyography. 5th ed. Williams & Wilkins, Baltimore

    Google Scholar 

  5. Berguer R, Rab GT, Abu-Ghaida H, Alarcon A, Chung J (1997) A comparison of surgeons’ posture during laparoscopic and open surgical procedures. Surg Endosc 11: 139–142

    Article  PubMed  CAS  Google Scholar 

  6. Chapman WH III, Albrecht RJ, Kim VB, Young JA, Chitwood WR Jr (2002) Computer-assisted laparoscopic splenectomy with the da Vinci surgical robot. J Laparoendosc Adv Surg Tech A 12: 155–159

    Article  PubMed  Google Scholar 

  7. Corcione F, Esposito C, Cuccurullo D, Settembre A, Miranda N, Amato F, Pirozzi F, Caiazzo P (2005) Advantage and limits of robot-assisted laparoscopic surgery: preliminary experience. Surg Endosc 19: 117–119

    Article  PubMed  CAS  Google Scholar 

  8. Dakin GF, Gagner M (2003) Comparison of laparoscopic skills performance between standard instruments and two surgical robotic systems. Surg Endosc 17: 574–579

    Article  PubMed  CAS  Google Scholar 

  9. D’Annibale A, Fiscon V, Trevisan P, Pozzobon M, Gianfreda V, Sovernigo G, Morpurgo E, Orsini C, DelMonte D (2004) The da Vinci robot in right adrenalectomy: considerations on technique. Surg Laparosc Endosc Percutan Tech 14: 38–41

    Article  PubMed  Google Scholar 

  10. DeUgarte DA, Etzioni DA, Gracia C, Atkinson JB (2003) Robotic surgery an resident training. Surg Endosc 17: 960–963

    Article  CAS  Google Scholar 

  11. DiMartino A, Verner L, Narazaki K, Hallbeck MS, Oleynikov D (2005) Effect of visual feedback on surgical performance using da VinciTM surgical system. J Laparoendosc Adv Surg Tech A (in review)

  12. Gallagher AG, Richie K, McClure N, McGuigan J (2001) Objective psychomotor skills assessment of experienced, junior, and novice laparoscopists with virtual reality. World J Surg 25: 1478–1483

    Article  PubMed  CAS  Google Scholar 

  13. Garcia-Ruiz A, Gagner M, Miller J, Steiner CP, Hahn JF (1998) Manual vs robotically assisted laparoscopic surgery in the performance of basic manipulation and suturing tasks. Arch Surg 133: 957–961

    Article  PubMed  CAS  Google Scholar 

  14. Gutt CN, Oniu T, Mehrabi A, Kashfi A, Schemmer P, Buchler MW (2004) Roboti-assisted abdominal surgery. Br J Surg 91: 1390–1397

    Article  PubMed  CAS  Google Scholar 

  15. Gutt CN, Oniu T, Schemmer P, Mehrabi A, Buchler MW (2004) Fewer adhesions induced by laparoscopic surgery? Surg Endosc 18: 898–906

    Article  PubMed  CAS  Google Scholar 

  16. Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51: 347–356

    Article  PubMed  CAS  Google Scholar 

  17. Hanly EJ, Talamini MA (2004) Robotic abdominal surgery. Am J Surg 188(4A): 19S–26S

    Article  PubMed  Google Scholar 

  18. Hernandez JD, Bann SD, Munz Y, Moorthy K, Datta V, Martin S, Dosis A, Bello F, Darzi A, Rockall T (2004) Qualitative and quantitative analysis of the learning curve of a simulated surgical task on the da Vinci system. Surg Endosc 18: 372–378

    Article  PubMed  CAS  Google Scholar 

  19. Horgan S, Vanuno D (2001) Robots in laparoscopic surgery. J Laparoendosc Adv Surg Tech A 11: 415–419

    Article  PubMed  CAS  Google Scholar 

  20. Intuitive Surgical Company Profile (n.d.) Retrieved November 4, 2005 from http://www.intuitivesurgical.com/corporate/companyprofile

  21. Kelso JAS (1995) Dynamic patterns. MIT Press, Boston, MA

    Google Scholar 

  22. Korolija D, Sauerland S, Wood-Dauphinee S, Abbou CC, Eypasch E, Garcia Caballero M, Lumsden MA, Millat B, Monson JRT, Nilsson G, Pointner R, Schwenk W, Shamiyeh A, Szold A, Targarona E, Ure B, Neugebauer E (2004) Evaluation of quality of life after laparoscopic surgery. Surg Endosc 18: 879–897

    Article  PubMed  CAS  Google Scholar 

  23. Kugler PN, Turvey MT (1987) Information, natural law, and the self-assembly of rhythmic movement. Erlbaum, Hillsdale, NJ

    Google Scholar 

  24. Kurz MJ, Stergiou N (2002) Effect of normalization and phase angle calculations on continuous relative phase. J Biomech 35: 369–374

    Article  PubMed  Google Scholar 

  25. Kurz MJ, Stergiou N (2004) Applied dynamic systems theory for the analysis of movement. In: Stergiou N (ed) Innovative analyses of human movement. Human Kinetics Publishers, Champaign, IL pp 93–119

    Google Scholar 

  26. Moorthy K, Munz Y, Dosis A, Hernandez J, Martin S, Bello F, Rockall T, Darzi A (2004) Dexterity enhancement with robotic surgery. Surg Endosc 18: 790–795

    PubMed  CAS  Google Scholar 

  27. Prasad SM, Maniar HS, Soper NJ, Damiano RJ, Klingensmith ME (2002) The effect of robotic assistance on learning curves for basic laparoscopic skills. Am J Surg 183: 702–707

    Article  PubMed  Google Scholar 

  28. Quick NE, Gillete JC, Shapiro R, Adrales GL, Gerlach D, Park AE (2003) The effect of using laparoscopic instruments on muscle activation patterns during minimally invasive surgery. Surg Endosc 17: 462–465

    Article  PubMed  CAS  Google Scholar 

  29. Ruurda JP, Broeders IA, Simmermacher RP, Rinkes IH, VanVroonhoven TJ (2002) Feasibility of robot-assisted laparoscopic surgery: an evaluation of 35 robot-assisted laparoscopic cholecystectomies. Surg Laparosc Endosc Percutan Tech 12: 41–45

    Article  PubMed  Google Scholar 

  30. Sarle R, Tewari A, Shrivastava A, Peabody J, Menon M (2004) Surgical robotics and laparoscopic training drills. J Endourol 18: 63–67

    Article  PubMed  Google Scholar 

  31. Smith CD, Farrell TM, McNatt SS, Metreveli RE (2001) Assessing laparoscopic manipulative skills. Am J Surg 181: 547–550

    Article  PubMed  CAS  Google Scholar 

  32. Talamini MA, Stanfield CL, Chang DC, Wu AW (2004) The surgical recovery index. Surg Endosc 18: 596–600

    Article  PubMed  CAS  Google Scholar 

  33. Turvey MT (1990) Coordination. Am Psychol 45: 938–953

    Article  PubMed  CAS  Google Scholar 

  34. Verner L, Oleynikov D, Holtmann S, Haider H, Zhukov L (2003) Measurements of the level of surgical expertise using flight path analysis from da VinciTM robotic surgical system. In: Westwood JD (ed). Medicine meets virtual reality. IOS Press, Amsterdam, The Netherlands

  35. Yohannes P, Rotariu P, Pinto P, Smith AD, Lee BR (2002) Comparison of robotic versus laparoscopic skills: is there a difference in the learning curve? Urology 60: 39–45

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Jesse Pandorf for his assistance with subject recruitment and data collection. They also thank Ben Solomon for his assistance with the data analysis. This study was supported in part by a grant from the Nebraska Research Initiative awarded to Drs. Oleynikov and Stergiou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Stergiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narazaki, K., Oleynikov, D. & Stergiou, N. Robotic surgery training and performance. Surg Endosc 20, 96–103 (2006). https://doi.org/10.1007/s00464-005-3011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-005-3011-3

Keywords

Navigation