Skip to main content
Log in

A Polynomial Quantum Algorithm for Approximating the Jones Polynomial

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The Jones polynomial, discovered in 1984, is an important knot invariant in topology. Among its many connections to various mathematical and physical areas, it is known (due to Witten) to be intimately connected to Topological Quantum Field Theory ( \({\sf{TQFT}}\) ). The works of Freedman, Kitaev, Larsen and Wang provide an efficient simulation of \({\sf{TQFT}}\) by a quantum computer, and vice versa. These results implicitly imply the existence of an efficient (namely, polynomial) quantum algorithm that provides a certain additive approximation of the Jones polynomial at the fifth root of unity, e 2πi/5, and moreover, that this problem is \({\sf{BQP}}\) -complete. Unfortunately, this important algorithm was never explicitly formulated. Moreover, the results of Freedman et al. are heavily based on \({\sf{TQFT}}\) , which makes the algorithm essentially inaccessible to computer scientists.

We provide an explicit and simple polynomial quantum algorithm to approximate the Jones polynomial of an n strands braid with m crossings at any primitive root of unity e 2πi/k, where the running time of the algorithm is polynomial in m, n and k. Our algorithm is based, rather than on \({\sf{TQFT}}\) , on well known mathematical results (specifically, the path model representation of the braid group and the uniqueness of the Markov trace for the Temperley-Lieb algebra). By the results of Freedman et al., our algorithm solves a \({\sf{BQP}}\) complete problem.

Our algorithm works by encoding the local structure of the problem into the local unitary gates which are applied by the circuit. This structure is significantly different from previous quantum algorithms, which are mostly based on the Quantum Fourier transform. Since the results of the current paper were presented in their preliminary form, these ideas have been extended and generalized in several interesting directions. Most notably, Aharonov, Arad, Eban and Landau give a simplification and extension of these results that provides additive approximations for all points of the Tutte polynomial, including the Jones polynomial at any point, and the Potts model partition function at any temperature and any set of coupling strengths. We hope and believe that the ideas presented in this work will have other extensions and generalizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, D., Arad, I.: On the \(\mathsf{BQP}\) -hardness of approximating the Jones polynomial. Preprint (2006)

  2. Aharonov, D., Arad, I., Eban, E., Landau, Z.: Polynomial Quantum algorithms for additive approximations of the Potts model and the Tutte polynomial. quant-ph/0702008 (2007)

  3. Aharonov, D., Jones, V., Landau, Z.: Preliminary version of this paper. In: Proceedings of STOC (2006). quant-ph/0511096

  4. Artin, E.: Theory of braids. Ann. Math. 48, 101–126 (1947)

    Article  MathSciNet  Google Scholar 

  5. Bisch, D., Jones, V.: Algebras associated to intermediate subfactors. Invent. Math. 128, 89–157 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bordewich, M., Freedman, M., Lovasz, L., Welsh, D.: Approximate counting and quantum computation. Comb. Probab. Comput. 14(5–6), 737–754 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Childs, A., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.: Exponential algorithmic speedup by quantum walk. In: STOC (2003)

  8. Conway, J.H.: An enumeration of knots and links, and some of their algebraic properties. In: Proceeding of the Conference on Computational Problems in Abstract Algebra, Oxford, 1967, pp. 329–358 (1970)

  9. van Dam, W., Hallgren, S.: Efficient quantum algorithms for shifted quadratic character problems. quant-ph/0011067

  10. Freedman, M.: P/NP and the quantum field computer. Proc. Natl. Acad. Sci., USA 95, 98–101 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Freedman, M., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum computation. Mathematical challenges of the 21st century. Bull. Am. Math. Soc. (N.S.) 40(1), 31–38 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Freedman, M.H., Kitaev, A., Wang, Z.: Simulation of topological field theories by quantum computers. Commun. Math. Phys. 227, 587–603 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Freedman, M.H., Larsen, M., Wang, Z.: A modular functor which is universal for quantum computation. Commun. Math. Phys. 227(3), 605–622 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Garnerone, S., Marzuoli, A., Rasetti, M.: quant-ph/0601169

  15. Garnerone, S., Marzuoli, A., Rasetti, M.: quant-ph/0606167

  16. Garnerone, S., Marzuoli, A., Rasetti, M.: quant-ph/0607203

  17. Garnerone, S., Marzuoli, A., Rasetti, M.: quant-ph/0703037v1

  18. Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter Graphs and Towers of Algebras. Springer, Berlin (1989)

    MATH  Google Scholar 

  19. Hallgren, S.: Polynomial-time quantum algorithms for Pell’s Equation and the principal ideal problem. In: STOC, pp. 653–658 (2002)

  20. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Philos. Soc. 108(1), 35–53 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries. In: STOC, pp. 712–721 (2001)

  22. Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc. 12(1), 103–111 (1985)

    Article  MATH  Google Scholar 

  23. Jones, V.F.R.: Index for subfactors. Invent. Math. 72, 1–25 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jones, V.F.R.: Braid groups, Hecke algebras and type II factors. In: Geometric Methods in Operator Algebras. Pitman Research Notes in Math., vol. 123, pp. 242–273. Longman, Harlow (1986)

    Google Scholar 

  25. Kauffman, L.: State models and the Jones polynomial. Topology 26, 395–407 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kauffman, L.H., Lomonaco, S.J. Jr.: q-deformed spin networks, knot polynomials and anyonic topological computation. J. Knot Theory Ramif. 16(3), 267–332 (2007). quant-ph/0606114 v3

    Article  MATH  MathSciNet  Google Scholar 

  27. Kauffman, L.H.: Quantum computing and the Jones polynomial. AMS Contemp. Math. Ser. 305, 101–137 (2002)

    MathSciNet  Google Scholar 

  28. Kauffman, L.H., Lomonaco, S.J.: A three-stranded quantum algorithm for the Jones polynomial. In: Donkor, E.J., Pirich, A.R., Brandt, H.E. (eds.) Quantum Information and Quantum Computation V. Proceedings of Spie, April 2007, pp. 1–16. Int. Soc. Opt. Eng. arXiv:0706.0020

  29. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. arXiv:quant-ph/0302112

  30. Lomonaco, S.J., Kauffman, L.H.: Topological quantum computing and the Jones polynomial. arXiv:quant-ph/0605004v1

  31. Neilsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambridge (2000)

    Google Scholar 

  32. Podtelezhnikov, A., Cozzarelli, N., Vologodskii, A.: Equilibrium distributions of topological states in circular DNA: interplay of supercoiling and knotting. Proc. Natl. Acad. Sci. USA 96(23), 12974–12979 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Preskill, J.: Topological quantum computation. In: Lecture Notes for Caltech Course # 219 in Physics. http://www.theory.caltech.edu/~preskill/ph229/#lecture

  34. Subramaniam, V., Ramadevi, P.: Quantum computation of Jones’ polynomials. quant-ph/0210095

  35. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  36. Shor, P.W., Jordan, S.P.: Estimating Jones polynomials is a complete problem for one clean qubit. arXiv:quant-ph0707.2831v1

  37. Vogel, P.: Representation of links by braids: a new algorithm. Comment. Math. Helv. 65(1), 104–113 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  38. Watrous, J.: Quantum algorithms for solvable groups. In: STOC, pp. 60–67 (2001)

  39. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wocjan, P., Yard, J.: The Jones polynomial: quantum algorithms and applications in quantum complexity theory. quant-ph/0603069

  41. Wu, F.Y.: Knot theory and statistical mechanics, Rev. Mod. Phys. 64(4) (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorit Aharonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aharonov, D., Jones, V. & Landau, Z. A Polynomial Quantum Algorithm for Approximating the Jones Polynomial. Algorithmica 55, 395–421 (2009). https://doi.org/10.1007/s00453-008-9168-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-008-9168-0

Keywords

Navigation