Skip to main content
Log in

Conventional process for ethanol production from Indian broken rice and pearl millet

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A conventional process for ethanol production involving liquefaction followed by simultaneous saccharification and fermentation (SSF) under the yeast fermentation conditions, was investigated at 30 and 35% dry solid (DS) of Indian broken rice and pearl millet feedstocks. The study followed the typical conventional process currently in use by the Indian Ethanol Industry. Liquefaction was carried out using a thermostable alpha amylase, and whereas SSF with a glucoamylase with additional side activities of pullulanase and protease under the yeast fermentation conditions. To measure the enzyme efficacy in the liquefaction process, fermentable sugar and liquefact solubility (brix) were monitored at the end of the liquefaction process. The liquefact was subjected to SSF with yeast. Addition of an acid fungal protease at a concentration of 0.1 kg per metric ton of grain during SSF was observed to accelerate yeast growth and ultimately, ethanol yield with both feedstocks. With both concentrations of feedstocks, the fermentation efficiency and ethanol recovery were determined. This study assesses the potential of these enzymes for ethanol production with higher dry solid concentration (≥30% w/w DS) of both these feedstocks in the conventional process to achieve higher plant throughput without compromising fermentation efficiency and ethanol recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gough S, Brady D, Nigam P, Marchant R, McHale AP (2007) Production of ethanol from molasses at 45 °C using alginate-immobilized Kluyveromyces marxianus imb3. Bioprocess Biosyst Eng 16:389–392

    Google Scholar 

  2. Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  Google Scholar 

  3. Kleih U, Ravi SB, Rao BD, Yoganand B (2007) Industrial utilization of sorghum in India. SAT eJ 3:1–37

    Google Scholar 

  4. Tiwale S (2010) Food grain vs liquor: Maharashtra under crisis. Econ Polit Wkly 14:19–21

    Google Scholar 

  5. Mussatto SI, Dragone G, Guimarães PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830

    Article  CAS  Google Scholar 

  6. Szulczyk KR, McCarl BA, Cornforth G (2010) Market penetration of ethanol. Renew Sust Energ Rev 14:394–403

    Article  CAS  Google Scholar 

  7. Bvochora JM, Read JS, Zvauya R (2000) Application of very high gravity technology to the cofermentation of sweet stem sorghum juice and sorghum grain. Ind Crop Prod 11:11–17

    Article  CAS  Google Scholar 

  8. Devantier R, Pedersen S, Olsson L (2005) Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Appl Microbiol Biotechnol 68:622–629

    Article  CAS  Google Scholar 

  9. Suresh K, Sree NK, Rao LV (1999) Utilization of damaged sorghum and rice grains for ethanol production by simultaneous saccharification and fermentation. Bioresour Technol 68:301–304

    Article  CAS  Google Scholar 

  10. Nikolić S, Mojović L, Rakin M, Pejin D, Pejin J (2010) Ultrasound-assisted production of bioethanol by simultaneous saccharification and fermentation of corn meal. Food Chem 122:216–222

    Article  Google Scholar 

  11. Thomas KC, Hynes SH, Ingledew WM (1995) Practical and theoretical considerations in the production of high concentration of alcohol by fermentation. Process Biochem 31:321–331

    Article  Google Scholar 

  12. Casey GP, Ingledew WM (1986) Ethanol tolerance in yeasts. CRC Crit Rev Biotechnol 13:219–280

    CAS  Google Scholar 

  13. Thomas KC, Hynes SH, Ingledew WM (1994) Effects of particulate material and osmoprotectants on very high gravity ethanolic fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol 60:1519–1524

    CAS  Google Scholar 

  14. Jones AM, Thomas KC, Ingledew WM (1994) Ethanolic fermentation of blackstrap molasses and sugarcane juice using very high gravity technology. J Agric Food Chem 42:1242–1246

    Article  CAS  Google Scholar 

  15. Bely M, Rinaldi A, Dubourdieu D (2003) Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. J Biosci Bioeng 96:507–512

    Article  CAS  Google Scholar 

  16. Bisson LV, Butzke CE (2000) Diagnosis and rectification of stuck and sluggish fermentation. Am J Enol Vitic 51:168–177

    CAS  Google Scholar 

  17. Breisha GZ (2010) Production of 16% ethanol from 35% sucrose. Biomass Bioenerg 34:1243–1249

    Article  CAS  Google Scholar 

  18. Dombek KM, Ingram LO (1986) Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation. Appl Environ Microbiol 52:975–981

    CAS  Google Scholar 

  19. Beltran G, Esteve-Zarzoso B, Rozes N, Mas A, Guillamoan JM (2005) Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. J Agric Food Chem 53:996–1002

    Article  CAS  Google Scholar 

  20. Bely M, Sablayrolles JM, Barre P (1990) Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J Ferment Bioeng 70:246–252

    Article  CAS  Google Scholar 

  21. Guo ZP, Zhang L, Ding ZY, Wang ZX, Shi GY (2010) Improving the performance of industrial ethanol-producing yeast by expressing the aspartylprotease on the cell surface. Yeast 27:1017–1027

    Article  CAS  Google Scholar 

  22. Kim TH, Taylor F, Hicks KB (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99:5695–5702

    Google Scholar 

  23. Montesinos T, Navarro JM (2000) Production of alcohol from raw wheat flour by amyloglucosidase and Saccharomyces cerevisiae. Enzym Microb Technol 27:362–370

    Article  CAS  Google Scholar 

  24. Neves MA, Kimura T, Shimizu N, Shiiba K (2006) Production of alcohol by simultaneous saccharification and fermentation of low-grade wheat flour. Braz Arch Biol Technol 49:481–490

    Article  Google Scholar 

  25. Ipsita R, Gupta MN (2004) Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzym Microb Technol 34:26–32

    Article  Google Scholar 

  26. Kłosowski G, Mikulski D, Czupryński B, Kotarska K (2010) Characterisation of fermentation of high-gravity maize mashes with the application of pullulanase, proteolytic enzymes and enzymes degrading non-starch polysaccharides. J Biosci Bioeng 109:466–471

    Article  Google Scholar 

  27. Jain RK, Bal S (1997) Physical properties of pearl millet. J Agric Eng Res 66:85–91

    Article  Google Scholar 

  28. Shanavas S, Padmaja G, Moorthy SN, Sajeev MS, Sheriff JT (2011) Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes. Biomass Bioenerg 35:901–909

    Article  CAS  Google Scholar 

  29. Beaven MJ, Carpentier C, Rose AH (1982) Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC 431. J Gen Microbiol 128:1447–1455

    CAS  Google Scholar 

  30. Thomas KC, Ingledew WM (1990) Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl Microbiol Biotechnol 56:2046–2050

    CAS  Google Scholar 

  31. Gantelet H, Duchiron F (1999) A new pullulanase from a hyperthermophilic archaeon for starch hydrolysis. Biotechnol Lett 21:71–75

    Article  CAS  Google Scholar 

  32. Gohel V, Megha C, Vyas P, Chhatpar HS (2004) Strain improvement of chitinase producing isolate Pantoea dispersa for enhancing its biocontrol potential against fungal plant pathogens. Ann Microbiol 54:503–515

    CAS  Google Scholar 

  33. Gohel V, Duan G (2012) No-cook process for ethanol production using Indian broken rice and pearl millet. Int J Microbiol 2012:1–9

    Google Scholar 

  34. Choi GW, Kang HW, Kim YR, Chung BW (2008) Ethanol production by Zymomonas mobilis CHZ2501 from industrial starch feedstocks. Biotechnol Bioprocess Eng 13:765–771

    Article  CAS  Google Scholar 

  35. Swinnen IAM, Bernaerts K, Dens EJJ, Geeraerd AH, Van Impe JF (2004) Predictive modelling of the microbial lag phase: a review. Int J Food Microbiol 94:137–159

    Article  CAS  Google Scholar 

  36. D’Amore T, Russell I, Stewart GG (1989) Sugar utilization by yeast during fermentation. J Ind Microbiol Biotechnol 4:315–324

    Google Scholar 

  37. Wang P, Singh V, Xue H, Johnston DB, Rausch KD, Tumbleson ME (2007) Comparison of raw starch hydrolyzing enzyme with conventional liquefaction and saccharification enzymes in dry-grind corn processing. Cereal Chem 84:10–14

    Article  CAS  Google Scholar 

  38. Gibreel A, Sandercock JR, Lan J, Goonewardene LA, Zijlstra RT, Curtis JM, Bressler DC (2009) Fermentation of barley by using Saccharomyces cerevisiae: examination of barley as a feedstock for bioethanol production and value-added products. Appl Environ Microbiol 75:1363–1372

    Article  CAS  Google Scholar 

  39. Wu X, Wang D, Bean SR, Wilson JP (2006) Ethanol production from pearl millet using Saccharomyces cerevisiae. Cereal Chem 83:127–131

    Article  CAS  Google Scholar 

  40. Zhan X, Wang D, Bean SR, Mo X, Sun XS, Boyl D (2006) Ethanol production from supercritical-fluid-extrusion cooked sorghum. Ind Crops Prod 23:304–310

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gohel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gohel, V., Duan, G. Conventional process for ethanol production from Indian broken rice and pearl millet. Bioprocess Biosyst Eng 35, 1297–1308 (2012). https://doi.org/10.1007/s00449-012-0717-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0717-1

Keywords

Navigation