Skip to main content
Log in

Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A kinetic model for glucose and xylose co-substrate uptake in Saccharomyces cerevisiae is presented. The model couples the enzyme kinetics with the glucose-dependent genetic expression of the individual transport proteins. This novel approach implies several options for optimizing the co-substrate utilization. Interestingly, the simulations predict a maximum xylose uptake rate at a glucose concentration >0 g/L, which suggests that the genetic expressions of the considered transport proteins are of importance when optimizing the xylose uptake. This was also evident in fed-batch simulations, where a distinct optimal glucose addition rate >0 g/L·h was found. Strategies for improving the co-substrate utilization by genetic engineering of the transport systems are furthermore suggested based on simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323

    Article  CAS  Google Scholar 

  2. Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117

    Article  CAS  Google Scholar 

  3. Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by Recombinant Saccharomyces cerevisiae Carrying XYL1, XYL2 and XKS1 in Mineral Medium Chemostat Cultures. Appl Environ Microbiol 66:3381–3386

    Article  CAS  Google Scholar 

  4. Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409

    Article  CAS  Google Scholar 

  5. Saloheimo A, Rauta J, Stasyyk OV, Sibirny AA, Penttilä M, Ruohonen L (2007) Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74:1041–1052

    Article  CAS  Google Scholar 

  6. Lee WJ, Kim MD, Ryu YW, Bisson LF (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60:186–191

    Article  CAS  Google Scholar 

  7. Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiol 148:2783–2788

    CAS  Google Scholar 

  8. Bisson LF, Fraenkel DG (1983) Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci USA 80(6):1730–1734

    Article  CAS  Google Scholar 

  9. Coons DM, Boulton RB, Bisson LF (1995) Computer-assisted nonlinear regression analysis of the multicomponent glucose uptake kinetics of Saccharomyces cerevisiae. J Bacteriol 1177:3251–3258

    Google Scholar 

  10. Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeast. FEMS Microbiol Rev 21:85–111

    Article  CAS  Google Scholar 

  11. Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292

    Article  CAS  Google Scholar 

  12. Özcan S, Johnston M (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol 15:1564–1572

    Google Scholar 

  13. Diderich JA, Schepper M, van Hoek P, Luttik MAH, van Dijken JP, Pronk JT, Klaassen P, Boelens HFM, de Mattos MJT, van Dam K, Kruckeberg AL (1999) Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274:15350–15359

    Article  CAS  Google Scholar 

  14. Liang H, Gaber RF (1996) A novel signal transduction pathway in Saccharomyces cerevisiae defined by snf3-regulated expression of HXT6. Mol Biol Cell 7:1953–1966

    CAS  Google Scholar 

  15. Johnston M, Flick JS, Pexton T (1994) Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol Cell Biol 14:3834–3841

    CAS  Google Scholar 

  16. Buziol S, Becker J, Baumeister A, Jung S, Mauch K, Reuss M, Boles E (2002) Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae. FEMS Yeast Res 2:283–291

    CAS  Google Scholar 

  17. Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333

    Article  CAS  Google Scholar 

  18. Maier A, Völker B, Boles E, Fuhrmann GF (2002) Characterization of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res 2:539–550

    CAS  Google Scholar 

  19. Sedlak M, Ho NWY (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21:671–684

    Article  CAS  Google Scholar 

  20. Kötter P, Ciriacy M (1992) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Article  Google Scholar 

  21. Özcan S, Johnston M (1999) Function, regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569

    Google Scholar 

  22. Reifenberger E, Freidel K, Ciriacy M (1995) Identification of novel HXT genes in reveals the impact of individual hexose transporters on glycolytic flux. Mol Microbiol 16:157–167

    Article  CAS  Google Scholar 

  23. Diderich JA, Schuurmans JM, van Gaalen MC, Kruckeberg AL, van Dam K (2001) Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae. Yeast 18:1515–1524

    Article  CAS  Google Scholar 

  24. Adams BG (1972) Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects. J Bacteriol 111:308–315

    CAS  Google Scholar 

  25. Sonnleitnert B, Käppeli O (1985) Growth of is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol Bioeng 28:927–937

    Article  Google Scholar 

  26. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  CAS  Google Scholar 

  27. Meinander NQ, Boels I, Hahn-Hägerdal B (1999) Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour Technol 68:79–87

    Article  CAS  Google Scholar 

  28. Pitkänen JP, Aristidou A, Salusjärvi L, Ruohonen L, Penttilä M (2003) Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab Eng 5:16–31

    Article  Google Scholar 

  29. Öhgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G (2006) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 126:488–498

    Article  Google Scholar 

  30. Senac T, Hahn-Hägerdal B (1990) Intermediary metabolite concentrations in xylulose- and glucose-fermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 56:120–126

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Bertilsson.

Additional information

Magnus Bertilsson and Jonas Andersson contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertilsson, M., Andersson, J. & Lidén, G. Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters. Bioprocess Biosyst Eng 31, 369–377 (2008). https://doi.org/10.1007/s00449-007-0169-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-007-0169-1

Keywords

Navigation