Skip to main content
Log in

Diffuse volcanic degassing and thermal energy release from Hengill volcanic system, Iceland

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We report the first detailed study of spatial variations on the diffuse emission of carbon dioxide (CO2) and hydrogen sulfide (H2S) from Hengill volcanic system, Iceland. Soil CO2 and H2S efflux measurements were performed at 752 sampling sites and ranged from nondetectable to 17,666 and 722 g m−2 day−1, respectively. The soil temperature was measured at each sampling site and used to evaluate the heat flow. The chemical composition of soil gases sampled at selected sampling sites during this study shows they result from a mixing process between deep volcanic/hydrothermal component and air. Most of the diffuse CO2 degassing is observed close to areas where active thermal manifestations occur, northeast flank of the Hengill central volcano close to the Nesjavellir power plant, suggesting a diffuse degassing structure with a SSW–NNE trend, overlapping main fissure zone and indicating a structural control of the degassing process. On the other hand, H2S efflux values are in general very low or negligible along the study area, except those observed at the northeast flank of the Hengill central volcano, where anomalously high CO2 efflux and soil temperatures were also measured. The total diffuse CO2 emission estimated for this volcanic system was about 1,526 ± 160 t day−1 of which 453 t day−1 (29.7 %) are of volcanic/hydrothermal origin. To calculate the steam discharge associated with the volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio from 12 fumarole samples equal to 88.6 (range, 9.4–240.2) as a representative value of the H2O/CO2 mass ratios for Hengill fumarole steam. The resulting estimate of the steam flow associated with the gas flux is equal to 40,154 t day−1. The condensation of this steam results in thermal energy release for Helgill volcanic system of 1.07 × 1014 J day−1 or to a total heat flow of 1,237 MWt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allard P, Carbonelle J, Dajlevic D, Le Bronec J, Morel P, Robe MC, Maurenas JM, Faivre-Pierret R, Martins D, Sabroux JC, Zettwoog P (1991) Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351:387–391

    Article  Google Scholar 

  • Ármannsson H, Fridriksson T, Wiese F, Hernández P, Pérez N (2007) CO2 budget of the Krafla geothermal system, NE-Iceland. In: Bullen TD, Wang Y (eds) Water–rock interaction. Taylor & Francis Group, London, pp 189–192

    Google Scholar 

  • Árnason K, Magnússon I (2001) Geothermal activity in the Hengill area. Results from resistivity mapping. Orkusfnun Report, in Icelandic with English abstract OS.2001/091, p 250

  • Árnason K, Eysteinsson H, Hersir G (2010) Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland. Geothermics 39:13–34

    Article  Google Scholar 

  • Arnórsson S, Gunnlaugsson E (1985) New gas geothermometers for geothermal exploration. Calibration and application. Geochim Cosmochim Acta 49:1307–1326

    Article  Google Scholar 

  • Arnórsson S, Bjarnaso JÖ, Giroud N, Gunnarsson I, Stefánsson A (2006) Sampling and analysis of geothermal fluids. Geofluids 6(3):203–216

    Google Scholar 

  • Baubron JC, Allard P, Toutain JP (1990) Diffuse volcanic emissions of carbon dioxide from Vulcano Island, (Italy). Nature 344:51–53

    Article  Google Scholar 

  • Björnsson A, Hersir GP, Björnsson G (1986) The Hengill high-temperature area in SW-Iceland. Reg Geophys Surv Geotherm Resour Counc Trans 10:205–210

    Google Scholar 

  • Björnsson G, Hjartarson A, Bödvarsson GS, Steingrímsson, B (2003) Development of a 3-D geothermal reservoir model for the greater Hengill volcano in SW-Iceland. Proceedings of the Tough Symposium, Lawrence Berkeley National Laboratory, Berkeley, California, 12–14 May

  • Bodvarsson GS, Bjornsson S, Gunnarsson A, Gunnlaugsson E, Sigurdsson O, Stefansson V, Steingrimsson B (1990) The Nesjavellir geothermal field, Iceland. Part 1. Field characteristics and development, of a three-dimensional numerical model. Geotherm Sci & Tech 2(3):189–228

    Google Scholar 

  • Brombach T, Hunziker C, Chiodini G, Cardellini C, Marini L (2001) Soil diffuse degassing and thermal energy fluxes from the southern Lakki plain, Nysiros (Greece). Geophys Res Lett 28(1):69–72

    Article  Google Scholar 

  • Carapezza ML, Inguaggiato S, Brusca L, Longo M (2004) Geochemical precursors of the activity of an open-conduit volcano: the Stromboli 2002–2003 eruptive events. Geophys Res Lett 31:L07620. doi:10.1029/2004GL019614

    Article  Google Scholar 

  • Carapezza ML, Barberi F, Ranaldi M, Ricci T, Tarchini L, Barrancos J, Fischer C, Perez N, Weber K, Di Piazza A, Gattuso A (2011) Diffuse CO2 soil degassing and CO2 and H2S concentrations in air and related hazards at Vulcano Island (Aeolian arc, Italy). J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2011.06.010

  • Cardellini G, Chiodini G, Frondini F (2003) Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J Geophys Res 108(B9):2425. doi:10.1029/2002JB002165

    Article  Google Scholar 

  • Chiodini G, Frondini F, Raco B (1996) Diffuse emission of CO2 from the Fossa crater Vulcano Island (Italy). Bull Volcanol 58:41–50

    Article  Google Scholar 

  • Chiodini G, Cioni R, Guidi M, Raco B, Marini L (1998) Soil CO2 flux measurements in volcanic and geothermal areas. Appl Geochem 13:543–552

    Article  Google Scholar 

  • Chiodini G, Frondini F, Cardellini C, Granieri D, Marini L, Ventura G (2001) CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J Geophys Res 106(B8):16213–16221

    Article  Google Scholar 

  • Chiodini G, Baldini A, Barberi F, Carapezza ML, Cardellini C, Frondini F, Granier D, Ranaldi M (2007) Carbon dioxide degassing at Latera caldera (Italy): evidence of geothermal reservoir and evaluation of its potential energy. J Geophys Res 112:B12204. doi:10.1029/2006JB004896

    Article  Google Scholar 

  • Dawson GB (1964) The nature and assessment of heat flow from hydrothermal areas. N Z J Geol Geophys 7:155–171

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: Geostatistical Software Library and user’s guide. Oxford University Press, New York, p 369

    Google Scholar 

  • Foulger GR (1988) The Hengill triple junction, SW Iceland. 1. Tectonic structure and the spatial and temporal distribution of local earthquakes. J Geophys Res 93(B11):493–506

    Google Scholar 

  • Foulger GR (1995) The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis. J Volcanol Geotherm Res 65:119–133

    Article  Google Scholar 

  • Foulger GR, Arnott SA (1993) Local tomography: volcanoes and the accretionary plate boundary in Iceland. In: Iyer HM, Hirahara K (eds) Seismic tomography: theory and practise. Chapman and Hall, London, pp 644–675

    Google Scholar 

  • Foulger GR, Toomey DR (1989) Structure and evolution of the Hengill-Grensdalur central volcano complex, Iceland: geology, geophysics and seismic tomography. J Geophys Res 94:17511–17522

    Article  Google Scholar 

  • Franzson H, Kristjánsson BR, Gunnarsson G, Björnsson G, Hjartarson A, Steingrímsson B, Gunnlaugsson E, Gíslason G (2005) The Hengill-Hellisheiði geothermal field. Development of a conceptual geothermal model. Proceedings of the World Geothermal Congress 2005, Antalya, Turkey, 24–29 April

  • Fridriksson T, Kristjánsson BR, Ármannsson H, Margrétardóttir E, Ólafsdóttir S, Chiodini G (2006) CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland. Appl Geochem 21(9):1551–1569

    Article  Google Scholar 

  • Fridriksson T, Óladóttir AA, Jónsson P, Eyjólfsdóttir EI (2010) The response of the Reykjanes geothermal system to 100 MWe power production: fluid chemistry and surface activity. Proceedings of the World Geothermal Congress 2010, Bali Indonesia. Available at http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/0626.pdf

  • Friese N, Krumbholz M, Burchardt S, Gudmundsson A (2005) Tectonics of the Hengill volcano, Southwest Iceland. Abstract V21D-0638, Am Geophys Union, Fall Meeting 2005

  • Frondini F, Chiodini G, Caliro S, Cardellini C, Granieri D, Ventura G (2004) Diffuse CO2 degassing at Vesuvio, Italy. Bull Volcanol 66:642–651

    Article  Google Scholar 

  • Frondini F, Caliro S, Cardellini C, Chiodini G, Morgantini N (2009) Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic–geothermal area (Italy). Appl Geochem 24(5):860–875. doi:10.1016/japgeochem200901010

    Article  Google Scholar 

  • Gerlach TM, Graeber EJ (1985) Volatile budget of Kilauea volcano. Nature 313(no 6000):273–277

    Article  Google Scholar 

  • Gerlach TM, Doukas MP, McGee KA, Kessler R (2001) Soil flux and total emission rates of magmatic CO2 at the Horeshoe Lake tree kill, Mammoth Mountain, California, 1995–1999. Chem Geol 177:101–116

    Article  Google Scholar 

  • Giggenbach WF (1980) Geothermal gas equilibria. Geochim Cosmochim Acta 44:2021–2032

    Article  Google Scholar 

  • Granieri D, Carapezza ML, Chiodini G, Avino R, Caliro S, Ranaldi M, Ricci T, Tarchini L (2006) Correlated increase in CO2 fumarolic content and diffuse emission from La Fossa crater (Vulcano, Italy): evidence of volcanic unrest or increasing gas release from a stationary deep magma body? Geophys Res Lett 33:L13316. doi:10.1029/2006GL026460

    Article  Google Scholar 

  • Hernández PA, Pérez NM, Salazar JM, Nakai S, Notsu K, Wakita H (1998) Diffuse emissions of carbon dioxide, methane, and hellium-3 from Teide volcano, Tenerife, Canary Islands. Geophys Res Lett 25:3311–3314

    Article  Google Scholar 

  • Hernández PA, Notsu K, Salazar JM, Mori T, Natale G, Okada H, Virgili G, Shimoike Y, Sato M, Pérez NM (2001a) Carbon dioxide degassing by advective flow from Usu volcano, Japan. Science 292:83–86

    Article  Google Scholar 

  • Hernández PA, Salazar JM, Shimoike Y, Mori T, Notsu K, Perez NM (2001b) Diffuse emission of CO2 from Miyakejima volcano, Japan. Chem Geol 177:175–185

    Article  Google Scholar 

  • Hernández PA, Notsu K, Tsurumi M, Mori T, Ohno M, Shimoike Y, Salazar JM, Pérez, NM (2003) Carbon dioxide emissions from soils at Hakkoda, North Japan. J Geophys Res 108:6-1–6-10

    Google Scholar 

  • Hernández PA, Notsu K, Okada H, Mori T, Sato M, Barahona F, Pérez NM (2006) Diffuse emission of CO2 from Showa-Shinzan, Hokkaido, Japan: a sign of volcanic dome degassing. Pure Appl Geophys 163:869–881

    Article  Google Scholar 

  • Ingólfsson Ó, Sigmarsson O, Sigmundsson F, Símonarson L (2008) The dynamic geology of Iceland. Jökull 58:1–2

    Google Scholar 

  • Jousset P, Haberland C, Bauer K, Arnason K (2011) Hengill geothermal volcanic complex (Iceland) characterized by integrated geophysical observations. Geothermics 40(1):1–24

    Article  Google Scholar 

  • Keenan JH, Keyes FG, Hill PG, Moore JG (1969) Steam tables—thermodynamic properties of water including vapor, liquid and solid phases (international edition metric units). Wiley, New York, p 162

    Google Scholar 

  • Landsvirkjun (2012) Landsvirkjun annual report 2011. Landsvirkjun, Reykjavík, Iceland, pp 108. Available at http://www.landsvirkjun.is/um-landsvirkjun/utgefid-efni/arsskyrsla

  • Lewicki L, Hilley GE, Tosha T, Aoyagi R, Yamamoto K, Benson SM (2007) Dynamic coupling of volcanic CO2 flow and wind at the Horseshoe Lake tree kill, Mammoth Mountain, California. Geophys Res Lett 34:L03401. doi:10.1029/2006gl028848

    Article  Google Scholar 

  • Marty B, Gunnlaugsson E, Jambon A, Óskarsson N, Ozima M, Pineau F, Torssander P (1991) Gas geochemistry of geothermal fluids, the Hengill area, southwest rift zone of Iceland. Chem Geol 91:207–225

    Article  Google Scholar 

  • Notsu K, Sugiyama K, Hosoe M, Uemura A, Shimoike Y, Tsunomori F, Sumino H, Yamamoto J, Mori T, Hernández PA (2005) Diffuse CO2 efflux from Iwojima volcano, Izu-Ogasawara arc, Japan. J Volcanol Geotherm Res 139:147–161

    Article  Google Scholar 

  • Óladóttir AÓ, Snæbjörnsdóttir SÓ (2011) Observations on surface activity in the Reykjanes geothermal field. ÍSOR Report 2011/055, Iceland GeoSurvey, Reykjavik, p 29

  • Óskarsson F, Fridriksson T (2011) Reykjanes production field. Geochemical monitoring in 2010. ÍSOR Report 2011/050, Iceland GeoSurvey, Reykjavík, p 51

  • Padrón E, Melián G, Nolasco D, Barrancos J, Hernández PA, Pérez N (2007) Precursory diffuse carbon dioxide degassing related to seismic activity in El Hierro islands, Canary Islands, Spain. Pure Appl Geophys 165:95–114

    Article  Google Scholar 

  • Padrón E, Hernández PA, Toulkeridis T, Pérez NM, Marrero R, Melián G, Virgili G, Notsu K (2008) Diffuse CO2 emission rate from Pululahua and the lake-filled Cuicocha calderas, Ecuador. J Volcanol Geotherm Res 176(1):163–169

    Article  Google Scholar 

  • Parkinson KJ (1981) An improved method for measuring soil respiration in the field. J Appl Ecol 18:221–228

    Article  Google Scholar 

  • Pérez NM, Salazar JML, Hernández PA, Soriano T, Lopez K, Notsu K (2004) Diffuse CO2 and 222Rn degassing from San Salvador volcano, El Salvador, Central America. Bull Geol Soc Am 375:227–236

    Google Scholar 

  • Pérez NM, Hernández PA, Padrón E, Cartagena R, Olmos R, Barahona F, Melián G, Salazar P, López DL (2006) Anomalous diffuse CO2 emission prior to the January 2002 short-term unrest at San Miguel Volcano, El Salvador, Central America. Pure Appl Geophys 4:883–896. doi:10.1007/s00024-006-0050-1

  • Pérez N, Hernández PA, Barrancos J, Melian G, Henriquez B, Mora R, Toulkeridis T (2007) H2S emission from Santa Ana (El Salvador), Masaya (Nicaragua) and Poas (Costa Rica) and Sierra Negra (Galpagos) volcanoes. Proceedings of the IUGG XXIV General Assembly, 2–13 July, Perugia, Italy, VS015, Oral Presentation 6906

  • Reykjavík Energy (2011) Reykjavik energy annual report 2010. Reykjavik Energy, Reykjavik, p 50

    Google Scholar 

  • Rogie JD, Kerrick DM, Sorey ML, Chiodini G, Galloway DL (2001) Dynamics of carbon dioxide emission at Mammoth Mountain, California. Earth Planet Sci Lett 188:535–541

    Article  Google Scholar 

  • Sæmundsson K (2006) The 1789 rifting event in the Hengill volcanic system, SW-Iceland. Am Geophys Union, Fall Meeting, Abstract T41B-1568

  • Salazar JML, Hernández PA, Pérez NM, Melián G, Álvarez J, Segura F, Notsu K (2001) Diffuse emissions of carbon dioxide from Cerro Negro volcano, Nicaragua, Central America. Geophys Res Lett 28:4275–4278

    Article  Google Scholar 

  • Salazar JML, Hernández PA, Pérez NM, Olmos R, Barahona F, Cartagena R, Soriano T, Lopez K, Notsu K (2004) Spatial and temporal variations of diffuse CO2 degassing at Santa Ana–Izalco–Coatepeque volcanic complex, El Salvador, Central America. Bull Geol Soc Am Spec Pap 375:135–146

    Google Scholar 

  • Salazar P, Pereda E, Padron E, Melian G, Perez NM, Hernández PA (2005) Secular variations of soil H2S efflux at Teide volcano, Tenerife, Canary Islands. Geophys Res Abstr 7:10096

    Google Scholar 

  • Sinclair AJ (1974) Selection of thresholds in geochemical data using probability graphs. J Geochem Explor 3:129–149

    Article  Google Scholar 

  • Tennant CB, White ML (1959) Study of the distribution of some geochemical data. Econ Geol 54:1281–1290

    Article  Google Scholar 

  • Toutain JP, Baubron JC, Le Broned J, Allard P, Briole P, Marty B, Miele G, Tedesco D, Luongo G (1992) Continuous monitoring of distal gas emanations at Vulcano, southern Italy. Bull Volcanol 54:147–155

    Article  Google Scholar 

  • Tryggvason A, Rögnvaldsson ST, Flóvenz ÓG (2002) Three-dimensional imaging of the P- and S-wave velocity structure and earthquake locations beneath Southwest Iceland. Geophys J Int 151(3):848–866

    Article  Google Scholar 

  • Vogfjörd KS, Hjaltadóttir S, Slunga R (2005) Volcano-tectonic Interaction in the Hengill Region, Iceland during 1993–1998. Eur Geosci Union Geophys Res Abst 7:09947

    Google Scholar 

  • Voltaggio M, Spadoni M (2009) Mapping of H2S fluxes from the ground using copper passive samplers: an application study at the Zolforata di Pomezia degassing area (Alban Hills, Central Italy). J Volcanol Geotherm Res 179:56–68

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by a grant from the Spanish Ministry of Science and Technology (CGL2005-07509) as well as by the Cabildo Insular de Tenerife (Spain). Field and logistic support was also provided by ISOR and Reykjavik Energy. The authors thank one anonymous reviewer and Williams C. Evans for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro A. Hernández.

Additional information

Editorial responsibility: P. Delmelle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, P.A., Pérez, N.M., Fridriksson, T. et al. Diffuse volcanic degassing and thermal energy release from Hengill volcanic system, Iceland. Bull Volcanol 74, 2435–2448 (2012). https://doi.org/10.1007/s00445-012-0673-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0673-2

Keywords

Navigation