Skip to main content

Advertisement

Log in

Management intensity at field and landscape levels affects the structure of generalist predator communities

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen A, Eltun R (2000) Long-term developments in the carabid and staphylinid (Col., Carabidae and Staphylinidae) fauna during conversion from conventional to biological farming. J Appl Entomol 124:51–56. doi:10.1046/j.1439-0418.2000.00438.x

    Article  Google Scholar 

  • Batáry P, Báldi A, Kleijn D, Tscharntke T (2011) Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc R Soc B 278:1894–1902

    Article  PubMed Central  PubMed  Google Scholar 

  • Bell JR, Wheater CP, Cullen WR (2001) The implications of grassland and heathland management for the conservation of spider communities: a review. J Zool 255:377–387. doi:10.1017/S0952836901001479

    Article  Google Scholar 

  • Bengtsson J, Ahnström J, Weibull A-C (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269. doi:10.1111/j.1365-2664.2005.01005.x

    Article  Google Scholar 

  • Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P (2011) Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev 87:52–71. doi:10.1111/j.1469-185X.2011.00184.x

    Article  PubMed  Google Scholar 

  • Birkhofer K, Bezemer TM, Bloem J, Bonkowski M, Christensen S, Dubois D, Ekelund F, Fließbach A, Gunst L, Hedlund K, Mäder P, Mikola J, Robin C, Setälä H, Tatin-Froux F, Van der Putten WH, Scheu S (2008) Long-term organic farming fosters below and aboveground biota: implications for soil quality, biological control and productivity. Soil Biol Biochem 40:2297–2308. doi:10.1016/jsoilbio200805007

    Article  CAS  Google Scholar 

  • Birkhofer K, Bezemer TM, Hedlund K, Setälä H (2012) Community composition of soil organisms under different wheat farming systems. In: Cheeke T, Coleman DC, Wall DH (eds) Microbial ecology in sustainable agroecosystems advances in agroecology. CRC, New York, pp 89–111

    Chapter  Google Scholar 

  • Blake S, Foster GN, Eyre MD, Luff ML (1994) Effects of habitat type and grassland management practices on the body size distribution of carabid beetles. Pedobiolgia 38:502–512

    Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238. doi:10.1016/j.tree.2012.10.012

    Article  PubMed  Google Scholar 

  • Butterfield BJ, Suding KN (2013) Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. J Ecol 101:9–17. doi: 10.1111/1365-2745.12013

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. doi:10.1038/nature11148

    Article  CAS  PubMed  Google Scholar 

  • Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932. doi:10.1111/j.1461-0248.2011.01642.x

    Article  PubMed  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. doi:10.1126/science.199.4335.1302

    Article  CAS  PubMed  Google Scholar 

  • Crowder DW, Snyder WE (2010) Eating their way to the top? Mechanisms underlying the success o f invasive insect generalist predators. Biological Invasions 12:2857–2876

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142. doi:10.1017/S1464793105006949

    Article  PubMed  Google Scholar 

  • Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33. doi:10.1111/j.1461-0248.2008.01255.x

    Article  PubMed  Google Scholar 

  • Fuller RJ, Norton LR, Feber RE, Johnson PJ, Chamberlain DE, Joys AC, Mathews F, Stuart RC, Townsend MC, Manley WJ, Wolfe MS, Macdonald DW, Firbank LG (2005) Benefits of organic farming to biodiversity vary among taxa. Biol Lett 1:431–434. doi:10.1098/rsbl.2005.0357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gagic V, Hänke S, Thies C, Scherber C, Tomanović Ž, Tscharntke T (2012) Agricultural intensification and cereal aphid–parasitoid–hyperparasitoid food webs: network complexity, temporal variability and parasitism rates. Oecologia 170:1099–1109. doi:10.1007/s00442-012-2366-0

    Article  PubMed Central  PubMed  Google Scholar 

  • Henle K, Davies K, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodiv Cons 13:207–251. doi:10.1023/B:BIOC.0000004319.91643.9e

    Article  Google Scholar 

  • Holland JM, Luff ML (2000) The effects of agricultural practices on carabidae in temperate agroecosystems. Integr Pest Manag Rev 5:109–129. doi:10.1023/A:1009619309424

    Article  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. doi:10.2307/4539083

    Article  Google Scholar 

  • Kleijn D, Baquero RA, Clough Y, Díaz M, De Esteban J, Fernández F, Gabriel D, Herzog F, Holzschuh A, Jöhl R, Knop E, Kruess A, Marshall EJP, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol Lett 9:243–254. doi:10.1111/j.1461-0248.2005.00869.x

    Article  CAS  PubMed  Google Scholar 

  • Kleijn D, Kohler F, Báldi A, Batáry P, Concepción E, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall EJ, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc R Soc B-Biol Sci 276:903–909. doi:10.1098/rspb.2008.1509

    Article  CAS  Google Scholar 

  • Kleijn D, Rundlöf M, Scheper J, Smith HG, Tscharntke T (2011) Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol Evol 26:474–481. doi:10.1016/j.tree.2011.05.009

    Article  PubMed  Google Scholar 

  • Jordbruksverket (2006) Bioenergi: ny energi för jordbruket [online]. http://www.sjv.se/download/18.1d56bbe108ae219d3980001660/ ra06_1.pdf. Accessed 8 June 2009

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. doi:10.1890/08-2244.1

    Article  PubMed  Google Scholar 

  • Laliberté E, Shipley B (2011) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version, pp 10–11

  • Laliberté E, Wells JA, DeClerck F, Metcalfe DJ, Catterall CP, Queiroz C, Aubin I, Bonser SP, Ding Y, Fraterrigo JM, McNamara S, Morgan JW, Merlos DS, Vesk PA, Mayfield MM (2010) Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol Lett 13:76–86. doi:10.1111/j.1461-0248.2009.01403.x

    Article  PubMed  Google Scholar 

  • Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10

    Article  PubMed  Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24. doi:10.2307/2657192

    Article  Google Scholar 

  • Lemke A, Poehling, H-M (2002) Sown weed strips in cereal fields: overwintering site and ‘‘source’’ habitat for Oedothorax apicatus (Blackwall) and Erigone atra (Blackwall) (Araneae: Erigonidae). Agric Ecosyst Environ 90:67–80

  • Lohaus K, Vidal S, Thies C (2013) Farming practices change food web structures in cereal aphid–parasitoid–hyperparasitoid communities. Oecologia 171:249–259. doi:10.1007/s00442-012-2387-8

    Article  PubMed Central  PubMed  Google Scholar 

  • Magura T, Tóthmérész B, Lövei GL (2006) Body size inequality of carabids along an urbanisation gradient. Basic Appl Ecol 7:472–482. doi:10.1016/j.baae.2005.08.005

    Article  Google Scholar 

  • Martin EA, Reineking B, Seo B, Steffan-Dewenter I (2013) Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc Natl Acad Sci USA 110:5534–5539. doi:10.1073/pnas.1215725110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Moonen AC, Bàrberi P (2008) Functional biodiversity: an agroecosystem approach. Agric Ecosyst Environ 1277–1221

  • Mouillot D, Villéger S, Sabatier P, Scherer-Lorenzen M, Mason MWH (2011) Functional structure of biological communities predicts ecosystem multifunctionality. PLoS ONE 6(3):e17476. doi:10.1371/journal.pone.0017476

  • Öberg S, Ekbom B (2006) Recolonisation and distribution of spiders and carabids in cereal fields after spring sowing. Ann Appl Biol 149:203–211. doi:10.1111/j.1744-7348.2006.00088.x

    Article  Google Scholar 

  • Persson AS, Olsson O, Rundlöf M, Smith HG (2010) Land use intensity and landscape complexity: analysis of landscape characteristics in an agricultural region in Southern Sweden. Agric Ecosyst Environ 136:169–176. doi:10.1016/j.agee.2009.12.018

    Article  Google Scholar 

  • Ribera I, Dolédec S, Downie IS, Foster GN (2001) Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82:1112–1129

    Article  Google Scholar 

  • Rundlöf M, Bengtsson J, Smith HG (2008) Local and landscape effects of organic farming on butterfly species richness and abundance. J Appl Ecol 45:813–820. doi:10.1111/j.1365-2664.2007.01448.x

    Article  Google Scholar 

  • Rusch A, Valantin-Morison M, Sarthou JP, Roger-Estrade J (2010) Biological control of insect pests in agroecosystems: effects of crop management, farming systems, and seminatural habitats at the landscape scale: a review. Adv Agron 109:219. doi:10.1016/S0065-2113(10)09006-1

    Article  Google Scholar 

  • Rusch A, Bommarco R, Jonsson M, Smith HG, Ekbom B (2013) Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J Appl Ecol 50:345–354. doi:10.1111/1365-2664.12055

    Article  Google Scholar 

  • Schmidt MH, Tscharntke T (2005) Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. J Biogeogr 32:467–473. doi:10.1111/j.1365-2699.2004.01244.x

    Article  Google Scholar 

  • Schmidt MH, Roschewitz I, Thies C, Tscharntke T (2005) Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J Appl Ecol 42:281–287. doi:10.1111/j.1365-2664.2005.01014.x

    Article  Google Scholar 

  • Stoate C, Boatman ND, Borralho RJ et al (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63:337–365. doi:10.1006/jema.2001.0473

    Article  CAS  Google Scholar 

  • Thies C, Haenke S, Scherber C, Bengtsson J, Bommarco R, Clement LW, Ceryngier P, Dennis C, Emmerson M, Gagic V, Hawro V, Liira J, Weisser WW, Winqvist C, Tscharntke T (2011) The relationship between agricultural intensification and biological control: experimental tests across Europe. Ecol Appl 21:2187–2196. doi:10.1890/10-0929.1

    Article  PubMed  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management. Ecol Lett 8:857–874. doi:10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, Van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes: eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • Tuck SL, Winqvist C, Mota F et al (2014) Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J Appl Ecol. doi:10.1111/1365-2664.12219

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301. doi:10.2307/27650754

    Article  PubMed  Google Scholar 

  • White EP, Ernest SKM, Kerkhoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. Trends Ecol Evol 22:323–330. doi:10.1016/j.tree.2007.03.007

    Article  PubMed  Google Scholar 

  • Winqvist C, Bengtsson J, Aavik T, Berendse F, Clement LW, Eggers S, Fischer C, Flohre A, Geiger F, Liira J, Pärt T, Thies C, Tscharntke T, Weisser WW, Bommarco R (2011) Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J Appl Ecol 48:570–579

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We thank Mattias Jonsson for helpful comments on an earlier draft of this manuscript and two anonymous reviewers for very helpful comments on the manuscript. Financial support was provided by the Swedish research council FORMAS to the project “SAPES—Multifunctional agriculture: harnessing biodiversity for sustaining agricultural production and ecosystem services”, and by the ERA-Net Biodiversa to the project “APPEAL—Assessment and valuation of Pest suppression Potential through biological control in European Agricultural Landscapes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Rusch.

Additional information

Communicated by Raphael Didham.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusch, A., Birkhofer, K., Bommarco, R. et al. Management intensity at field and landscape levels affects the structure of generalist predator communities. Oecologia 175, 971–983 (2014). https://doi.org/10.1007/s00442-014-2949-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2949-z

Keywords

Navigation