Skip to main content

Advertisement

Log in

Moisture status during a strong El Niño explains a tropical montane cloud forest’s upper limit

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Growing evidence suggests short-duration climate events may drive community structure and composition more directly than long-term climate means, particularly at ecotones where taxa are close to their physiological limits. Here we use an empirical habitat model to evaluate the role of microclimate during a strong El Niño in structuring a tropical montane cloud forest’s upper limit and composition in Hawai‘i. We interpolate climate surfaces, derived from a high-density network of climate stations, to permanent vegetation plots. Climatic predictor variables include (1) total rainfall, (2) mean relative humidity, and (3) mean temperature representing non-El Niño periods and a strong El Niño drought. Habitat models explained species composition within the cloud forest with non-El Niño rainfall; however, the ecotone at the cloud forest’s upper limit was modeled with relative humidity during a strong El Niño drought and secondarily with non-El Niño rainfall. This forest ecotone may be particularly responsive to strong, short-duration climate variability because taxa here, particularly the isohydric dominant Metrosideros polymorpha, are near their physiological limits. Overall, this study demonstrates moisture’s overarching influence on a tropical montane ecosystem, and suggests that short-term climate events affecting moisture status are particularly relevant at tropical ecotones. This study further suggests that predicting the consequences of climate change here, and perhaps in other tropical montane settings, will rely on the skill and certainty around future climate models of regional rainfall, relative humidity, and El Niño.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen CD, Breshears DD (1998) Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci 95:14839–14842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barrows CW, Rotenberry JT, Allen MF (2010) Assessing sensitivity to climate change and drought variability of a sand dune endemic lizard. Biol Conserv 143:731–736

    Article  Google Scholar 

  • Bateman BL, VanDerWal J, Johnson CN (2012) Nice weather for bettongs: using weather events, not climate means, in species distribution models. Ecography 35:306–314

    Article  Google Scholar 

  • Battisti A, Stastny M, Buffo E, Larsson S (2006) A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Glob Change Biol 12:662–671

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balic RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci 102:15144–15148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao G, Giambelluca TW, Stevens DE, Schroeder T (2007) Inversion variability in the Hawaiian trade wind regime. J Clim 20:1145–1160

    Article  Google Scholar 

  • Chen I-C, Shiu H-J, Benedick S, Holloway JD, Chey VK, Barlow HS, Hill JK, Thomas CD (2009) Elevation increases in moth compositions over 42 years on a tropical mountain. Proc Natl Acad Sci 106:1479–1483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chu P-S (1989) Hawaiian drought and the southern oscillation. Int J Climatol 9:619–631

    Article  Google Scholar 

  • Chu P-S, Chen H (2005) Interannual and interdecadal rainfall variations in the Hawaiian Islands. J Clim 18:4796–4813

    Article  Google Scholar 

  • Cornwell WK, Bhaskar R, Sack L, Cordell S, Lunch CK (2007) Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Funct Ecol 21:1063–1071

    Article  Google Scholar 

  • Crausbay SD, Hotchkiss SC (2010) Strong relationships between vegetation and two perpendicular climate gradients high on a tropical mountain in Hawai‘i. J Biogeogr 37:1160–1174

    Article  Google Scholar 

  • Da Silva SC (2012) High altitude climate of the Island of Hawai‘i. Master thesis, Department of Meteorology, University of Hawai‘i at Mānoa, Honolulu

  • Dore MHI (2005) Climate change and changes in global precipitation patterns: what do we know? Environ Int 31:1167–1181

    Article  PubMed  Google Scholar 

  • Feeley KJ, Davies SJ, Perez R, Hubbell SP, Foster RB (2011a) Directional changes in the species composition of a tropical forest. Ecology 92:871–882

    Article  PubMed  Google Scholar 

  • Feeley KJ, Silman MR, Bush MB, Farfan W, Cabrera KG, Malhi Y, Meir P, Revilla NS, Quisiyupanqui MNR, Saatchi S (2011b) Upslope migration of Andean trees. J Biogeogr 38:783–791

    Article  Google Scholar 

  • Fernández-Palacios JM, de Nicolás JP (1995) Altitudinal pattern of vegetation variation on Tenerife. J Veg Sci 6:183–190

    Article  Google Scholar 

  • Foster P (2001) Potential negative impacts of global climate change on tropical montane cloud forests. Earth Sci Rev 55:73–106

    Article  Google Scholar 

  • Frazier AG (2012) Month–year rainfall maps of the Hawaiian Islands. Master thesis, Department of Geography, University of Hawai‘i at Mānoa, Honolulu

  • Giambelluca TW, Diaz HF, Luke MSA (2008) Secular temperature changes in Hawai‘i. Geophys Res Lett 35:L12702

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the scientific basis, technical summary of the Working Group I report. Cambridge University Press, Cambridge

  • Jentsch A, Beierkuhnlein C (2008) Research frontiers in climate change: effects of extreme meteorological events on ecosystems. Geoscience 340:621–628

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate change experiments: events, not trends. Front Ecol Environ 5:315–324

    Article  Google Scholar 

  • Juvik JO, Rodomsky BT, Price JP, Hansen EW, Kueffer C (2011) “The upper limits of vegetation on Mauna Loa, Hawaii”: a 50th-anniversary reassessment. Ecology 92:518–525

    Article  PubMed  Google Scholar 

  • Kitayama K (1995) Biophysical conditions of the montane cloud forests of Mount Kinabalu, Sabah, Malaysia. In: Bruijnzeel LA, Scatena FN, Hamilton JO (eds) Tropical montane cloud forests. Cambridge University Press, Cambridge, pp 183–197

    Chapter  Google Scholar 

  • Kitayama K, Mueller-Dombois D (1992) Vegetation of the wet windward slope of Haleakala, Maui, Hawaii. Pacif Sci 46:197–220

    Google Scholar 

  • Krushelnycky PD, Loope LL, Giambelluca TW, Starr F, Starr K, Drake DR, Taylor AD, Robichaux RH (2013) Climate-associated population declines reverse recovery and threaten future of an iconic high-elevation plant. Glob Change Biol 19:911–922

    Google Scholar 

  • Letten AD, Ashcroft MB, Keith DA, Gollan JR, Ramp D (2013) The importance of temporal climate variability for spatial patterns in plant diversity. Ecography 36:001–009

    Article  Google Scholar 

  • Levy EG, Madden EA (1933) The point method of vegetation analysis. N Z J Agric 46:267–279

    Google Scholar 

  • Lloret F, Escudero A, Iriondo JM, Martínez-Vilalta J, Valladares F (2012) Extreme climatic events and vegetation: the role of stabilizing processes. Glob Change Biol 18:797–805

    Article  Google Scholar 

  • Loope LL, Giambelluca TW (1998) Vulnerability of Island tropical montane cloud forests to climate change, with special reference to East Maui, Hawai‘i. Clim Change 39:503–517

    Article  Google Scholar 

  • Mair A, Fares A (2011) Comparison of rainfall interpolation methods in a mountainous region of a Tropical Island. J Hydrol Eng 16:371–383

    Article  Google Scholar 

  • Martin PH, Sherman RE, Fahey TJ (2007) Tropical montane forest ecotones: climate gradients, natural disturbance, and vegetation zonation in the Cordillera Central, Dominican Republic. J Biogeogr 34:1792–1806

    Article  Google Scholar 

  • Martínez R, Ruiz D, Andrade M, Blacutt L, Pabón D, Jaimes E, León G, Villacís M, Quintana J, Montealegre E, Euscátegui C (2011) Synthesis of the climate of the Tropical Andes. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the Tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), pp 97–109

    Google Scholar 

  • McCain CM, Colwell RK (2011) Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol Lett 14:1236–1245

    Article  PubMed  Google Scholar 

  • McCune B (2006) Nonparametric habitat models with automatic interactions. J Veg Sci 17:819–830

    Article  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plant survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • Melcher PJ, Cordell S, Jones TJ, Scowcroft PG, Niemenura W, Giambelluca TW, Goldstein G (2000) Supercooling capacity increases from sea level to tree line in the Hawaiian tree species Metrosideros polymorpha. Int J Plant Sci 161:369–379

    Article  PubMed  Google Scholar 

  • Menard T (1999) Ecological and hydrological effects of a rainless period on a montane cloud forest treeline on Haleakalā, Maui. Master thesis, Department of Geography, University of Hawai‘i at Mānoa, Honolulu

  • Notaro M (2008) Response of the mean global vegetation distribution to interannual climate variability. Clim Dyn 30:845–854

    Article  Google Scholar 

  • Palmer DD (2002) Hawaii’s ferns and fern allies. University of Hawaii Press, Honolulu

    Google Scholar 

  • Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81:443–450

    Article  Google Scholar 

  • Pau S, Okin GS, Gillespie TW (2010) Asynchronous response of tropical forest leaf phenology to seasonal and El Niño-driven drought. PLoS One 5:e11325

    Article  PubMed Central  PubMed  Google Scholar 

  • Phillips OL, van der Heijden G, Lewis SL, López-González G, Aragão LEOC, Lloyd J, Malhi Y, Monteagudo A, Almeida S, Dávila EA, Amaral I, Andelman S, Andrade A, Arroyo L, Aymard G, Baker TR, Blanc L, Bonal D, de Oliveira ACA, Chao K-J, Cardozo ND, da Costa L, Feldpausch TR, Fisher JB, Fyllas NM, Freitas MA, Galbraith D, Gloor E, Higuchi N, Honorio E, Jiménez E, Keeling H, Killeen TJ, Lovett JC, Meir P, Mendoza C, More A, Vargas PN, Patiño S, Peh KS-H, Cruz AP, Prieto A, Quesada CA, Ramírez F, Ramírez H, Rudas A, Salamão R, Schwarz M, Silva J, Silveira M, Slik JWF, Sonké B, Thomas AS, Stropp J, Taplin JRD, Vásquez R, Vilanova E (2010) Drought-mortality relationships for tropical forests. New Phytol 187:631–646

    Article  PubMed  Google Scholar 

  • Raes N, Ferry Slik JW, van Loon E, ter Steege H (2009) Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography 32:180–192

    Article  Google Scholar 

  • Raxworthy CJ, Pearson RG, Rabibisoa N, Rakotondrazafy AM, Ramanamanjato J-B, Raselimanana AP, Wu S, Nussbaum RA, Stone DA (2008) Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Glob Change Biol 14:1703–1720

    Article  Google Scholar 

  • Reyer CPO, Leuzinger S, Rammig A, Wolf A, Bartholomeus RP, Bonfante A, de Lorenzi F, Dury M, Gloning P, Jaoudé RA, Klein T, Kuster TM, Martins M, Niedrist G, Riccardi M, Wohlfahrt G, de Angelis P, de Dato GA, François L, Menzel A, Pereira M (2013) A plant’s perspective of extremes: terrestrial plant responses to changing climate variability. Glob Change Biol 19:75–89

    Article  Google Scholar 

  • Rolim SG, Jesus RM, Nascimento HEM, do Couto HTZ, Chambers JQ (2005) Biomass change in an Atlantic tropical moist forest: the ENSO effect in permanent sample plots over a 22-year period. Oecologia 142:238–246

    Article  PubMed  Google Scholar 

  • Smith MD (2011) The ecological role of climate extremes: current understanding and future prospects. J Ecol 99:651–655

    Article  Google Scholar 

  • Thibault KM, Brown JH (2008) Impact of an extreme climatic event on community assembly. Proc Natl Acad Sci 105:3410–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner WL, Herbst DR, Sohmer SH (1999) Manual of the flowering plants of Hawaii, revised edition. Bishop Museum Press, Honolulu

    Google Scholar 

  • Will RE, Wilson SM, Zou CB, Hennessey TC (2013) Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. New Phytol. doi:10.1111/nph.12321

    PubMed  Google Scholar 

  • Wolter K, Timlin MS (2011) El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int J Climatol 31:1074–1087

    Article  Google Scholar 

  • Wright SJ, Calderón O (2006) Seasonal, El Niño and longer term changes in flower and seed production in a moist tropical forest. Ecol Lett 9:35–44

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann NE, Yoccoz NG, Edwards TC, Meier ES, Thuiller W, Guisan A, Schmatz DR, Pearman PB (2009) Climatic extremes improve predictions of spatial patterns of tree species. Proc Natl Acad Sci 106(Suppl 2):19723–19728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the USGS Biological Resources Discipline Global Change Research Program, the USGS Pacific Island Ecosystems Research Center, US Fish and Wildlife Service in support of the Pacific Islands Climate Change Cooperative (PICCC; award number 12170-B-G100), and a National Science Foundation Dissertation Improvement grant (award number DEB-0808466). Partial support of HaleNet field observations and data management was provided through NSF EPSCoR 0903833 (J. Gaines, PI). We thank Haleakalā National Park, the Hanawī Natural Area Reserve, Corie Yanger, Gregor Schuurman, Michael Nullet, John DeLay, Lloyd Loope, Sarah Bogen, and Janice Poehlman for assistance. Anonymous reviewers, Jennifer Schmitz, Gregor Schuurman, Monica Turner, Michael Tweiten, and Jack Williams provided helpful comments on this manuscript. Data collection complies with the current laws of the USA in which the collection was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelley D. Crausbay.

Additional information

Communicated by Tim Seastedt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 635 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crausbay, S.D., Frazier, A.G., Giambelluca, T.W. et al. Moisture status during a strong El Niño explains a tropical montane cloud forest’s upper limit. Oecologia 175, 273–284 (2014). https://doi.org/10.1007/s00442-014-2888-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2888-8

Keywords

Navigation