Skip to main content

Advertisement

Log in

Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling

  • Global change ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

A better understanding of soil microbial ecology is critical to gaining an understanding of terrestrial carbon (C) cycle–climate change feedbacks. However, current knowledge limits our ability to predict microbial community dynamics in the face of multiple global change drivers and their implications for respiratory loss of soil carbon. Whether microorganisms will acclimate to climate warming and ameliorate predicted respiratory C losses is still debated. It also remains unclear how precipitation, another important climate change driver, will interact with warming to affect microorganisms and their regulation of respiratory C loss. We explore the dynamics of microorganisms and their contributions to respiratory C loss using a 4-year (2006–2009) field experiment in a semi-arid grassland with increased temperature and precipitation in a full factorial design. We found no response of mass-specific (per unit microbial biomass C) heterotrophic respiration to warming, suggesting that respiratory C loss is directly from microbial growth rather than total physiological respiratory responses to warming. Increased precipitation did stimulate both microbial biomass and mass-specific respiration, both of which make large contributions to respiratory loss of soil carbon. Taken together, these results suggest that, in semi-arid grasslands, soil moisture and related substrate availability may inhibit physiological respiratory responses to warming (where soil moisture was significantly lower), while they are not inhibited under elevated precipitation. Although we found no total physiological response to warming, warming increased bacterial C utilization (measured by BIOLOG EcoPlates) and increased bacterial oxidation of carbohydrates and phenols. Non-metric multidimensional scaling analysis as well as ANOVA testing showed that warming or increased precipitation did not change microbial community structure, which could suggest that microbial communities in semi-arid grasslands are already adapted to fluctuating climatic conditions. In summary, our results support the idea that microbial responses to climate change are multifaceted and, even with no large shifts in community structure, microbial mediation of soil carbon loss could still occur under future climate scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adu JK, Oades JM (1978) Utilization of organic materials in soil aggregates by bacteria and fungi. Soil Biol Biochem 10:117–122. doi:10.1016/0038-0717(78)90081-0

    Article  CAS  Google Scholar 

  • Ågren GI, Hyvönen R, Nilsson T (2007) Are Swedish forest soils sinks or sources for CO2—model analyses based on forest inventory data. Biogeochemistry 82:217–227. doi:10.1007/s10533-006-9064-0

    Google Scholar 

  • Allison SD, Wallentein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340. doi:10.1038/ngeo846

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Mol Biol Rev 59:143–169

    CAS  Google Scholar 

  • Balser TC, Wixon D (2009) Investigating biological control over soil carbon temperature sensitivity. Glob Change Biol 15:2935–2949. doi:10.1111/j.1365-2486.2009.01946.x

    Article  Google Scholar 

  • Balser TC, Gutknecht JLM, Liang C (2010) How will climate change impact soil microbial communities? In: Dixon GR, Tilston E (eds) Soil microbiology and sustainable crop. University of Reading Press, Reading, pp 373–397

    Chapter  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814. doi:10.1038/ismej.2008.58

    Article  PubMed  CAS  Google Scholar 

  • Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917. doi:10.1038/ismej.2010.171

    Article  PubMed  CAS  Google Scholar 

  • Berg N, Steinberge Y (2008) Role of perennial plants in determining the activity of the microbial community in the Negev Desert ecosystem. Soil Biol Biochem 40:2686–2695. doi:10.1016/j.soilbio.2008.07.019

    Article  CAS  Google Scholar 

  • Bi J, Zhang NL, Liang Y, Yang HJ, Ma KP (2012) Interactive effects of water and nitrogen addition on soil microbial communities in a semiarid steppe. J Plant Ecol 5:320–329. doi:10.1093/jpe/rtr046

    Google Scholar 

  • Bond-Lamberty B, Thomson A (2010a) A global database of soil respiration data. Biogeosciences 7:1915–1926

    Article  CAS  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010b) Temperature-associated increases in the global soil respiration record. Nature 464:579–582. doi:10.1038/nature08930

    Article  PubMed  CAS  Google Scholar 

  • Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Change Biol 15:808–824. doi:10.1111/j.1365-2486.2008.01681.x

    Article  Google Scholar 

  • Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278. doi:10.1007/s002489900082

    Article  PubMed  CAS  Google Scholar 

  • Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327. doi:10.1111/j.1461-0248.2008.01251.x

    Article  PubMed  Google Scholar 

  • Bradford MA, Watts BW, Davies CA (2010) Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob Change Biol 16:1576–1588. doi:10.1111/j.1365-2486.2009.02040.x

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi:10.1016/0038-0717(85)90144-0

    Article  CAS  Google Scholar 

  • Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci USA 104:4990–4995. doi:10.1073/pnas.0610045104

    Article  PubMed  CAS  Google Scholar 

  • Classen AT, Boyle SI, Haskins KE, Overby ST, Hart SC (2003) Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microb Ecol 44:319–328. doi:10.1016/S0168-6496(03)00068-0

    Article  CAS  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Change Biol. doi:10.1111/gcb.12113

    Google Scholar 

  • Crowther TW, Bradford MA (2013) Thermal acclimation in widespread heterotrophic soil microbes. Ecol Lett. doi:10.1111/ele.12069

    PubMed  Google Scholar 

  • Cruz-Martínez K, Suttle KB, Brodie EL, Power ME, Andersen GL, Banfield JF (2009) Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J 3:738–744. doi:10.1038/ismej.2009.16

    Article  PubMed  Google Scholar 

  • Evans S, Wallenstein M (2012) Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 109:101–116. doi:10.1007/s10533-011-9638-3

    Article  Google Scholar 

  • Frey SD, Drijber R, Smith H, Melillo J (2008) Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem 40:2904–2907. doi:10.1016/j.soilbio.2008.07.020

    Article  CAS  Google Scholar 

  • Frostegård Å, Bååth E (1996) The use of phospholipids fatty acid to estimate bacterial and fungal biomass in soil. Biol Fert Soils 22:59–65. doi:10.1007/BF00384433

    Article  Google Scholar 

  • Gallardo A, Schlesinger WH (1995) Factors determining soil microbial biomass and nutrient immobilization in desert soils. Biogeochemistry 28:55–68. doi:10.1007/BF02178061

    Article  Google Scholar 

  • Garland JL, Mills A (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microb 57:2351–2359

    CAS  Google Scholar 

  • Gattinger A, Günthner A, Schloter M, Munch JC (2003) Characterisation of archaea in soils by polar lipid analysis. Acta Biotechnol 23:21–28. doi:10.1002/abio.200390003

    Article  CAS  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251. doi:10.1126/science.1061967

    Article  PubMed  CAS  Google Scholar 

  • Gomez E, Ferreras L, Toresani S (2006) Soil bacterial functional diversity as influenced by organic amendment application. Bioresour Technol 97:1484–1489. doi:10.1016/j.biortech.2005.06.021

    Article  PubMed  CAS  Google Scholar 

  • Gregorich EC, Beare MH, Stoklas U, St-Georges P (2003) Biodegradability of soluble organic matter in maize-cropped soils. Geoderma 113:237–252. doi:10.1016/S0016-7061(02)00363-4

    Article  CAS  Google Scholar 

  • Gutknecht JLM, Field CB, Balser TC (2012) Variation in long-term microbial community response to simulated global change. Glob Change Biol 18:2256–2269. doi:10.1111/j.1365-2486.2012.02686.x

    Article  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146. doi:10.1023/A:1006244819642

    Article  CAS  Google Scholar 

  • Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2008) Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol Lett 11:1092–1100. doi:10.1111/j.1461-0248.2008.01223.x

    Google Scholar 

  • Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2009) No evidence for compensatory thermal adaptation of soil microbial respiration in the study of Bradford et al. (2008). Ecol Lett 12:E12–14. doi:10.1111/j.1461-0248.2009.01300.x

  • Hopkins DW, Gregorich EG (2005) Carbon as a substrate for soil organisms. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 57–79

    Chapter  Google Scholar 

  • Hu S, Bruggen V (1997) Microbial dynamics associated with multiphasic decomposition of 14C-labeled cellulose in soil. Microb Ecol 33:134–143. doi:10.1007/s002489900015

    Article  PubMed  CAS  Google Scholar 

  • Insam H (1997) A new set of substrates proposed for community characterization in environmental samples. In: Insam H, Rangger A (eds) Microbial communities: functional versus structural approaches. Springer, Berlin, pp 259–260

    Chapter  Google Scholar 

  • Jonasson S, Castro J, Michelsena A (2004) Litter, warming and plants affect respiration and allocation of soil microbial and plant C, N and P in Arctic mesocosms. Soil Biol Biochem 36:1129–1139. doi:10.1016/j.soilbio.2004.02.023

    Article  CAS  Google Scholar 

  • Kalbitz K, Schmetwitz J, Schwesig D, Matzer E (2003) Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113:273–291. doi:10.1016/S0016-7061(02)00365-8

    Article  CAS  Google Scholar 

  • Keiblinger KM, Hall EK, Wanek W, Szukics U, Hämmerle I, Ellersdorfer G, Sandra Böck, Strauss J, Sterflinger K, Richter A, Zechmeister-Boltenstern S (2010) The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiol Ecol 73:430–440. doi:10.1111/j.1574-6941.2010.00912.x

    PubMed  CAS  Google Scholar 

  • Kelting DL, Burger JA, Edwards GS (1998) Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biol Biochem 30:961–968. doi:10.1016/S0038-0717(97)00186-7

    Article  CAS  Google Scholar 

  • Konopka A, Oliver L, JrRF Turco (1998) The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb Ecol 35:103–115. doi:10.1007/s002489900065

    Article  PubMed  CAS  Google Scholar 

  • Lamb EG, Han S, Lanoil BD, Henry GR, Brummell ME, Banerjee S, Siciliano SD (2011) A high arctic soil ecosystem resists long-term environmental manipulations. Glob Change Biol 17:3187–3194. doi:10.1111/j.1365-2486.2011.02431.x

    Article  Google Scholar 

  • Liu YX, Wu TW, Yan JH, Guo YF (2007) Prediction research of climate change trends over north China in the future 30 years. Acta Meteorol Sin 65:45–51

    Google Scholar 

  • Liu WX, Zhang Z, Wan SQ (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Change Biol 15:184–195. doi:10.1111/j.1365-2486.2008.01728.x

    Article  Google Scholar 

  • Liu YX, Li X, Zhang Q, Guo YF, Gao G, Wang JP (2010) Simulation of regional temperature and precipitation in the past 50 years and the next 30 years over China. Quatern Int 212:57–63. doi:10.1016/j.quaint.2009.01.007

    Article  Google Scholar 

  • Madan R, Pankhurst C, Hawke B, Smith S (2002) Use of fatty acids for identification of AM fungi and estimation of the biomass of AM spores in soil. Soil Biol Biochem 34:125–128. doi:10.1016/S0038-0717(01)00151-1

    Article  CAS  Google Scholar 

  • Manzoni S, Taylor P, Richter A, Porporato A, Ågren G (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91. doi:10.1111/j.1469-8137.2012.04225.x

    Article  PubMed  CAS  Google Scholar 

  • Miguel CS, Dulinski M, Tate RL (2007) Direct comparison of individual substrate utilization from a CLPP study: a new analysis for metabolic diversity data. Soil Biol Biochem 39:1870–1877. doi:10.1016/j.soilbio.2007.01.039

    Article  Google Scholar 

  • Mijangos I, Pérez R, Albizu I (2006) Effects of fertilization and tillage on soil biological parameters. Enzyme Microb Tech 40:100–106. doi:10.1016/j.enzmictec.2005.10.043

    Article  CAS  Google Scholar 

  • Milcu A, Thebault E, Scheu S, Eisenhauer N (2010) Plant diversity enhances the reliability of belowground processes. Soil Biol Biochem 42:2102–2110. doi:10.1016/j.soilbio.2010.08.005

    Article  CAS  Google Scholar 

  • Niu SL, Wu MY, Han Y, Xia JY, Li L, Wan SQ (2007) Water-mediated responses of ecosystem C fluxes to climatic change in a temperate steppe. New Phytol 177:209–219. doi:10.1111/j.1469-8137.2007.02237.x

    PubMed  Google Scholar 

  • Pinkart HC, Ringelberg DB, Piceno YM, Macnaughton SJ, White DC (2002) Biochemical approaches to biomass measurements and community structure analysis. In: Hurst CJ (ed) Manual of environmental microbiology. ASM, Washington, DC, pp 101–113

    Google Scholar 

  • Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles—a critique. FEMS Microb Ecol 42:1–14. doi:10.1111/j.1574-6941.2002.tb00990.x

    CAS  Google Scholar 

  • Ringelberg DB, Stair JO, Almeida J, Norby RJ, O’Neill EG, White DC (1997) Consequences of rising atmospheric carbon dioxide levels for the belowground microbiota associated with white oak. J Environ Qual 26:495–503. doi:10.2134/jeq1997.00472425002600020022x

    Article  CAS  Google Scholar 

  • Rinnan R, Michelsen A, Baath E, Jonasson S (2007) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob Change Biol 13:28–39. doi:10.1111/j.1365-2486.2006.01263.x

    Article  Google Scholar 

  • Rinnan R, Stark S, Tolvanen A (2009) Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. J Ecol 97:788–800. doi:10.1111/j.1365-2745.2009.01506.x

    Article  CAS  Google Scholar 

  • Schimel J (1995) Ecosystem consequences of microbial diversity and community structure. In: Chapin FS, Köner C (eds) Arctic and Alpine biodiversity: patterns, causes and ecosystem consequences. Springer, Berlin, pp 239–254

    Chapter  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394. doi:10.1890/06-0219

    Article  PubMed  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790. doi:10.1038/nrmicro2439

    Article  PubMed  CAS  Google Scholar 

  • Six J, Fre S, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569. doi:10.2136/sssaj2004.0347

    Article  CAS  Google Scholar 

  • Standing DB, Castro JIR, Prosser JI, Meharg A, Killham K (2005) Rhizosphere carbon flow: a driver of soil microbial diversity. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 57–79

    Google Scholar 

  • Tiemann LK, Billings SA (2011) Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biol Biochem 43:1837–1847. doi:10.1016/j.soilbio.2011.04.020

    Article  CAS  Google Scholar 

  • Timonen S, Bomberg M (2009) Archaea in dry soil environments. Phytochem Rev 8:505–518. doi:10.1007/s11101-009-9137-5

    Article  CAS  Google Scholar 

  • Todd-Brown K, Hopkins F, Kivlin S, Talbot J, Allison S (2012) A framework for representing microbial decomposition in coupled climate models. Biogeochemistry 109:19–33. doi:10.1007/s10533-011-9635-6

    Article  Google Scholar 

  • Treseder K, Balser T, Bradford M, Brodie E, Dubinsky E, Eviner V, Hofmockel K, Lennon J, Levine U, MacGregor B, Pett-Ridge J, Waldrop M (2012) Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry 109:7–18. doi:10.1007/s10533-011-9636-5

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. doi:10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Waldrop MP, Firestone MK (2004) Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67:235–248. doi:10.1023/B:BIOG.0000015321.51462.41

    Article  CAS  Google Scholar 

  • White DC, Stair JO, Ringelberg DB (1996) Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. J Ind Microbiol 17:185–196. doi:10.1007/BF01574692

    Article  CAS  Google Scholar 

  • William MA, Rice CW (2007) Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community. Appl Soil Ecol 35:525–545. doi:10.1016/j.apsoil.2006.09.014

    Google Scholar 

  • Yang HJ, Wu MY, Liu WX, Zhang Z, Zhang NL, Wan SQ (2010) Community structure and composition in response to climate change in a temperate steppe. Glob Change Biol 17:452–465. doi:10.1111/j.1365-2486.2010.02253.x

    Article  Google Scholar 

  • Yang HJ, Li Y, Wu MY, Zhang Z, Li LH, Wan SQ (2011) Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Glob Change Biol 17:2936–2944. doi:10.1111/j.1365-2486.2011.02423.x

    Article  Google Scholar 

  • Young IM, Ritz KEG (2005) Carbon as a substrate for soil organisms. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 36–38

    Google Scholar 

  • Zak DR, Ringelberg DB, Pregitzer KS, Randlett DL, White DC, Curtis PS (1996) Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2. Ecol Appl 6:257–262. doi:10.2307/2269568

    Article  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050. doi:10.1890/0012-9658(2006)87[1659:MCCAFA]2.0.CO;2

  • Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275–294. doi:10.1016/S0045-6535(97)00155-0

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Parker KM, Luo Y, Wan S, Wallance LL, Hu S (2005) Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Glob Change Biol 11:266–277. doi:10.1111/j.1365-2486.2005.00902.x

    Article  CAS  Google Scholar 

  • Zhao J, Wang XL, Shao YH, Xu GL, Fu SL (2011) Effects of vegetation removal on soil properties and decomposer organisms. Soil Biol Biochem 43:954–960

    Article  CAS  Google Scholar 

  • Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481. doi:10.2136/sssaj1997.03615995006100020015x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank both anonymous reviewers for their careful reviews of the manuscript. This study was conducted as part of a comprehensive research project (Global Change Multi-factor Experiment-Duolun) sponsored by the Institute of Botany, Chinese Academy of Sciences. This study was supported by grants from the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-JC401), the International Foundation for Science (IFS, C/4783-1) and the National Natural Science Foundation of China (30590382/C011108, 30925009). We wish to extend our thanks to the staff of the Duolun Restoration Ecology Experimentation and Demonstration Station for field sampling. We gratefully acknowledge Dr. Jie Bi for soil PLFA extraction, Prof. Shenglei Fu for GC analysis of the PLFA extracts, Dr. Qiong Ding for data analysis, Drs. Jianyang Xia and Yu Liang for their valuable suggestions. We would also like to thank Christine Verhille at the University of British Columbia for her assistance with English language and grammatical editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keping Ma.

Additional information

Communicated by John Stark.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 244 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Liu, W., Yang, H. et al. Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling. Oecologia 173, 1125–1142 (2013). https://doi.org/10.1007/s00442-013-2685-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2685-9

Keywords

Navigation