Skip to main content
Log in

Predator faunas past and present: quantifying the influence of waterborne cues in divergent ecotypes of the isopod Asellus aquaticus

  • Behavioral ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Waterborne chemical cues are an important source of information for many aquatic organisms, in particular when assessing the current risk of predation. The ability to use chemical cues to detect and respond to potential predators before an actual encounter can improve prey chances of survival. We investigated predator recognition and the impact of chemical cues on predator avoidance in the freshwater isopod Asellus aquaticus. This isopod has recently colonised a novel habitat and diverged into two distinct ecotypes, which encounter different predator communities. Using laboratory-based choice experiments, we have quantified behavioural responses to chemical cues from predators typical of the two predator communities (larval dragonflies in the ancestral habitat, perch in the newly colonised habitat) in wild-caught and lab-reared Asellus of the two ecotypes. Individuals with prior experience of predators showed strong predator avoidance to cues from both predator types. Both ecotypes showed similar antipredator responses, but sexes differed in terms of threat-sensitive responses with males avoiding areas containing predator cues to a larger extent than females. Overall, chemical cues from fish elicited stronger predator avoidance than cues from larval dragonflies. Our results indicate that in these isopods, prior exposure to predators is needed to develop antipredator behaviour based on waterborne cues. Furthermore, the results emphasise the need to analyse predator avoidance in relation to waterborne cues in a sex-specific context, because of potential differences between males and females in terms of vulnerability and life history strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Åbjörnsson K, Wagner BMA, Axelsson A, Bjerselius R, Olsen KH (1997) Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis). Oecologia 111:166–171

    Article  Google Scholar 

  • Åbjörnsson K, Hansson LA, Brönmark C (2004) Responses of prey from habitats with different predator regimes: local adaptation and heritability. Ecology 85:1859–1866

    Article  Google Scholar 

  • Arakelova KS (2001) The evaluation of individual production and scope for growth in aquatic sow bugs (Asellus aquaticus). Aquat Ecol 35:31–42

    Article  Google Scholar 

  • Baker CF, Montgomery JC (2001) Species-specific attraction of migratory banded kokopu juveniles to adult pheromones. J Fish Biol 58:1221–1229

    Article  Google Scholar 

  • Benard MF (2004) Predator-induced phenotypic plasticity in organisms with complex life histories. Annu Rev Ecol Syst 35:651–673

    Article  Google Scholar 

  • Brönmark C, Pettersson LB (1994) Chemical cues from piscivores induce a change in morphology in crucian carp. Oikos 70:396–402

    Article  Google Scholar 

  • Brown GE (2003) Learning about danger: chemical alarm cues and local risk assessment in prey fishes. Fish Fish 4:227–234

    Article  CAS  Google Scholar 

  • Brown GE, Godin JGJ (1999) Who dares, learns: chemical inspection behaviour and acquired predator recognition in a characin fish. Anim Behav 57:475–481

    Article  PubMed  Google Scholar 

  • Brown GE, Macnaughton CJ, Elvidge CK, Ramnarine I, Godin JGJ (2009) Provenance and threat-sensitive predator avoidance patterns in wild-caught Trinidadian guppies. Behav Ecol Sociobiol 63:699–706

    Article  Google Scholar 

  • Brown GE, Ferrari MCO, Elvidge CK, Ramnarine I, Chivers DP (2013) Phenotypically plastic neophobia: a response to variable predation risk. Proc R Soc Lond B 280. doi:10.1098/rspb.2012.2712

  • Dahl J, Nilsson PA, Pettersson LB (1998) Against the flow: chemical detection of downstream predators in running waters. Proc R Soc Lond B 265:1339–1344

    Article  Google Scholar 

  • Dunn AM, Dick JTA, Hatcher MJ (2008) The less amorous Gammarus: predation risk affects mating decisions in Gammarus duebeni (Amphipoda). Anim Behav 76:1289–1295

    Article  Google Scholar 

  • Dupuch A, Magnan P, Dill LM (2004) Sensitivity of northern redbelly dace, Phoxinus eos, to chemical alarm cues. Can J Zool 82:407–415

    Article  Google Scholar 

  • Eroukhmanoff F, Svensson EI (2009) Contemporary parallel diversification, antipredator adaptations and phenotypic integration in an aquatic isopod. PLoS ONE 4:e6173

    Article  PubMed  Google Scholar 

  • Eroukhmanoff F, Hargeby A, Arnberg NN, Hellgren O, Bensch S, Svensson EI (2009) Parallelism and historical contingency during rapid ecotype divergence in an isopod. J Evol Biol 22:1098–1110

    Article  PubMed  CAS  Google Scholar 

  • Ferrari MCO, Messier F, Chivers DP (2006) The nose knows: minnows determine predator proximity and density through detection of predator odours. Anim Behav 72:927–932

    Article  Google Scholar 

  • Ferrari MCO, Gonzalo A, Messier F, Chivers DP (2007) Generalization of learned predator recognition: an experimental test and framework for future studies. Proc R Soc Lond B 274:1853–1859

    Article  Google Scholar 

  • Ferrari MCO, Messier F, Chivers DP, Messier O (2008) Can prey exhibit threat-sensitive generalization of predator recognition? Extending the predator recognition continuum hypothesis. Proc R Soc Lond B 275:1811–1816

    Article  Google Scholar 

  • Gonzalo A, López P, Martín J (2007) Iberian green frog tadpoles may learn to recognize novel predators from chemical alarm cues of conspecifics. Anim Behav 74:447–453

    Article  Google Scholar 

  • Hale R, Swearer SE, Downes BJ (2009) Separating natural responses from experimental artefacts: habitat selection by a diadromous fish species using odours from conspecifics and natural stream water. Oecologia 159:679–687

    Article  PubMed  Google Scholar 

  • Hargeby A, Erlandsson J (2006) Is size-assortative mating important for rapid pigment differentiation in a freshwater isopod? J Evol Biol 19:1911–1919

    Article  PubMed  CAS  Google Scholar 

  • Hargeby A, Andersson G, Blindow I, Johansson S (1994) Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 279–280:83–90

    Article  Google Scholar 

  • Hargeby A, Johansson J, Ahnesjo J (2004) Habitat-specific pigmentation in a freshwater isopod: adaptive evolution over a small spatiotemporal scale. Evolution 58:81–94

    PubMed  Google Scholar 

  • Hargeby A, Stoltz J, Johansson J (2005) Locally differentiated cryptic pigmentation in the freshwater isopod Asellus aquaticus. J Evol Biol 18:713–721

    Article  PubMed  CAS  Google Scholar 

  • Hargeby A, Blindow I, Andersson G (2007) Long-term patterns of shifts between clear and turbid states in Lake Krankesjön and Lake Tåkern. Ecosystems 10:29–36

    Article  Google Scholar 

  • Harris S (2010) Behaviour under predation risk: antipredator strategies, behavioural syndromes and sex-specific responses in aquatic prey. PhD dissertation. Department of Biology, Lund University, Lund

    Google Scholar 

  • Harris S, Ramnarine IW, Smith HG, Pettersson LB (2010) Picking personalities apart: estimating the influence of predation, sex and body size on boldness in the guppy Poecilia reticulata. Oikos 119:1711–1718

    Article  Google Scholar 

  • Harris S, Eroukhmanoff F, Karlsson Green K, Svensson EI, Pettersson LB (2011) Changes in behavioural trait integration following rapid ecotype divergence in an aquatic isopod. J Evol Biol 24:1887–1896

    Article  PubMed  CAS  Google Scholar 

  • Hawkins LA, Magurran AE, Armstrong JD (2007) Innate abilities to distinguish between predator species and cue concentration in Atlantic salmon. Anim Behav 73:1051–1057

    Article  Google Scholar 

  • Helfman GS (1989) Threat-sensitive predator avoidance in damselfish-trumpetfish interactions. Behav Ecol Sociobiol 24:47–58

    Article  Google Scholar 

  • Holomuzki JR, Short TM (1988) Habitat use and fish avoidance behaviors by the stream-dwelling isopod Lirceus fontinalis. Oikos 52:79–86

    Article  Google Scholar 

  • Holomuzki JR, Short TM (1990) Ontogenic shifts in habitat use and activity in a stream-dwelling isopod. Holarct Ecol 13:300–307

    Google Scholar 

  • Jormalainen V, Merilaita S, Härdling R (2000) Dynamics of intersexual conflict over precopulatory mate guarding in two populations of the isopod Idotea baltica. Anim Behav 60:85–93

    Article  PubMed  Google Scholar 

  • Karlsson K, Eroukhmanoff F, Härdling R, Svensson EI (2010a) Parallel divergence in mate guarding behaviour following colonization of a novel habitat. J Evol Biol 23:2540–2549

    Article  PubMed  CAS  Google Scholar 

  • Karlsson K, Eroukhmanoff F, Svensson EI (2010b) Phenotypic plasticity in response to the social environment: effects of density and sex ratio on mating behaviour following ecotype divergence. PLoS ONE 5(9):e12755

    Article  PubMed  Google Scholar 

  • Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394

    Google Scholar 

  • Kelley JL, Magurran AE (2003) Learned predator recognition and antipredator responses in fishes. Fish Fish 4:216–226

    Article  Google Scholar 

  • Lass S, Spaak P (2003) Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491:221–239

    Article  Google Scholar 

  • Lima SL, Bednekoff PA (1999) Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. Am Nat 153:649–659

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Article  Google Scholar 

  • Lima SL, Steury TD (2005) Perception of predation risk: the foundation of nonlethal predator-prey interactions. In: Barbosa P, Castellanos I (eds) Ecology of predator-prey interactions. Oxford University Press, Oxford, pp 166–188

    Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models. SAS Institute, Cary

    Google Scholar 

  • Mathis A, Hoback WW (1997) The influence of chemical stimuli from predators on precopulatory pairing by the amphipod, Gammarus pseudolimnaeus. Ethology 103:33–40

    Article  Google Scholar 

  • McIntosh AR, Peckarsky BL, Taylor BW (1999) Rapid size-specific changes in the drift of Baetis bicaudatus (Ephemeroptera) caused by alterations in fish odour concentration. Oecologia 118:256–264

    Article  Google Scholar 

  • Pettersson LB, Nilsson PA, Brönmark C (2000) Predator recognition and defence strategies in crucian carp, Carassius carassius. Oikos 88:200–212

    Article  Google Scholar 

  • Rask M, Hiisivuori C (1985) The predation on Asellus aquaticus (L) by perch, Perca fluviatilis (L), in a small forest lake. Hydrobiologia 121:27–33

    Article  Google Scholar 

  • Schoeppner NM, Relyea RA (2005) Damage, digestion, and defence: the roles of alarm cues and kairomones for inducing prey defences. Ecol Lett 8:505–512

    Article  PubMed  Google Scholar 

  • Schoeppner NM, Relyea RA (2009) Interpreting the smells of predation: how alarm cues and kairomones induce different prey defences. Funct Ecol 23:1114–1121

    Article  Google Scholar 

  • Short TM, Holomuzki JR (1992) Indirect effects of fish on foraging behavior and leaf processing by the isopod Lirceus fontinalis. Freshwater Biol 27:91–97

    Article  Google Scholar 

  • Sih A, Ziemba R, Harding KC (2000) New insights on how temporal variation in predation risk shapes prey behavior. Trends Ecol Evol 15:3–4

    Article  PubMed  Google Scholar 

  • Smith GR, Burgett AA, Temple KG, Sparks KA, Winter KE (2008) The ability of three species of tadpoles to differentiate among potential fish predators. Ethology 114:701–710

    Article  Google Scholar 

  • Smock LA, Harlowe KL (1983) Utilization and processing of freshwater wetland macrophytes by the detritivore Asellus forbesi. Ecology 64:1556–1565

    Article  Google Scholar 

  • Unwin EE (1920) Notes upon the reproduction of Asellus aquaticus. J Linn Soc Lond Zool 34:335–343

    Article  Google Scholar 

  • Utne-Palm AC (2001) Response of naive two-spotted gobies Gobiusculus flavescens to visual and chemical stimuli of their natural predator, cod Gadus morhua. Mar Ecol Prog Ser 218:267–274

    Article  Google Scholar 

  • Verovnik R, Sket B, Trontelj P (2005) The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Mol Ecol 14:4355–4369

    Article  PubMed  CAS  Google Scholar 

  • Wagner BMA, Hansson L-A (1998) Food competition and niche separation between fish and the red-necked grebe Podiceps grisegena (Boddaert, 1783). Hydrobiologia 368:75–81

    Article  Google Scholar 

  • Williams DD, Moore KA (1985) The role of semiochemicals in benthic community relationships of the lotic amphipod Gammarus pseudolimnaeus—a laboratory analysis. Oikos 44:280–286

    Article  Google Scholar 

  • Wisenden BD, Constantz GD (2006) The role of public chemical information in antipredator behaviour. In: Ladich F, Collins SP, Möller P, Kapoor BG (eds) Communication in fishes. Science Publishers, Enfield, pp 259–278

    Google Scholar 

  • Wisenden B, Dye T (2009) Young convict cichlids use visual information to update olfactory homing cues. Behav Ecol Sociobiol 63:443–449

    Article  Google Scholar 

  • Wudkevich K, Wisenden BD, Chivers DP, Smith RJF (1997) Reactions of Gammarus lacustris to chemical stimuli from natural predators and injured conspecifics. J Chem Ecol 23:1163–1173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Henrik G. Smith for statistical advice and two anonymous referees for constructive comments on a previous draft of this manuscript. This study was financially supported by the Swedish Research Council and the Swedish EPA to L. B. P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Karlsson Green.

Additional information

Communicated by Steven Kohler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 349 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, S., Karlsson Green, K. & Pettersson, L.B. Predator faunas past and present: quantifying the influence of waterborne cues in divergent ecotypes of the isopod Asellus aquaticus . Oecologia 173, 791–799 (2013). https://doi.org/10.1007/s00442-013-2667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2667-y

Keywords

Navigation