Skip to main content
Log in

Ectomycorrhizal fungal community assembly on regenerating Douglas-fir after wildfire and clearcut harvesting

  • Ecosystem ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Wildfire severity in forests is projected to increase with warming and drying conditions associated with climate change. Our objective was to determine the impact of wildfire and clearcutting severity on the ectomycorrhizal fungal (EMF) community of Douglas-fir seedlings in the dry forests of interior British Columbia, Canada. We located our study within and surrounding the area of the McLure fire (August 2003). We hypothesized that disturbance would affect EMF community assembly due to reductions in fungal inoculum. Five treatments representing a range of disturbance severities were compared: high severity burn, low severity burn, screefed clearcut (manual removal of forest floor), clearcut, and undisturbed forest. EMF communities in the undisturbed forest were more complex than those in all disturbance treatments. However, aspects of community assembly varied with disturbance type, where the burn treatments had the simplest communities. After 4 months, regenerating seedlings in the burn treatments had the lowest colonization, but seedlings in all treatments were fully colonized within 1 year. EMF communities were similar among the four disturbance types, largely due to dominance of Wilcoxina throughout the study period. However, forest floor retention influenced community assembly as the EMF in the clearcut treatment, where forest floor was retained, had levels of diversity and richness comparable to the undisturbed forest. Overall, the results suggest that increasing forest floor disturbance can alter EMF community assembly in the first year of regeneration. A correlation between poorly colonized seedlings and seedling productivity also suggests a role for productivity in influencing community assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashkannejhad S, Horton T (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345–354. doi:10.1111/j.1469-8137.2005.01593.x

    Article  PubMed  Google Scholar 

  • Baar J, Horton T, Kretzer A, Bruns T (1999) Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytol 143:409–418. doi:10.1046/j.1469-8137.1999.00452.x

    Article  Google Scholar 

  • Bai YG, Thompson D, Broersma K (2004) Douglas-fir and ponderosa pine seed dormancy as regulated by grassland seedbed conditions. J Range Manag 57:661–667. doi:10.2307/4004025

    Article  Google Scholar 

  • Baldwin QF, Egger KN (1996) Protocols for analysis of DNA from mycorrhizal roots. In: Goodman DM, Durall DM, Trofymow JA, Berch SM (eds) Concise descriptions of North American ectomycorrhizae. Mycologue Publications, Sidney

    Google Scholar 

  • Barker JS (2010) National regeneration potential of Douglas-fir following wildfire and clearcut harvesting. PhD Dissertation, University of British Columbia, Vancouver

  • Bergner B, Johnstone J, Treseder K (2004) Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest. Glob Chang Biol 10:1996–2004. doi:10.1111/j.1365-2486.2004.00868.x

    Article  Google Scholar 

  • Byrd K, Parker V, Vogler D, Cullings K (2000) The influence of clear-cutting on ectomycorrhizal fungus diversity in a lodgepole pine (Pinus contorta) stand, Yellowstone National Park, Wyoming, and Gallatin National Forest, Montana. Can J Bot 78:149–156

    Google Scholar 

  • Caccia FD, Ballaré CL (1998) Effects of tree cover, understory vegetation, and litter on regeneration of Douglas-fir (Pseudotsuga menziesii) in southwestern Argentina. Can J For Res 28:683–692

    Google Scholar 

  • Cairney JWG, Bastias BA (2007) Influences of fire on forest soil fungal communities. Can J For Res 37:207–215. doi:10.1139/X06-190

    Article  Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10. doi:10.1007/s00442-004-1788-8

    Article  PubMed  Google Scholar 

  • Cline E, Ammirati J, Edmonds R (2005) Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings? New Phytol 166:993–1009. doi:10.1111/j.1469-8137.2005.01387.x

    Article  PubMed  CAS  Google Scholar 

  • DeBano LF, Neary DG, Ffolliott PF (1998) Fire’s effects on ecosystems. Wiley, New York

    Google Scholar 

  • Dickie IA (2007) Host preference, niches and fungal diversity. New Phytol 174:230–233. doi:10.1111/j.1469-8137.2007.02055.x

    Article  PubMed  Google Scholar 

  • Dickie I, Xu B, Koide R (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535. doi:10.1046/j.1469-8137.2002.00535.x

    Article  CAS  Google Scholar 

  • Druebert C, Lang C, Valtanen K, Polle A (2009) Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant Cell Environ 32:992–1003. doi:10.1111/j.1365-3040.2009.01983.x

    Article  PubMed  CAS  Google Scholar 

  • Fujiyoshi M, Yoshitake S, Watanabe K, Murota K, Tsuchiya Y, Uchida M, Nakatsubo T (2011) Successional changes in ectomycorrhizal fungi associated with the polar willow Salix polaris in a deglaciated area in the High Arctic, Svalbard. Polar 34:667–673

    Google Scholar 

  • Goodman D, Durall DM, Trofymow J (1996) A manual of concise descriptions of North American Ectomycorrhizae. Mycologue Publications, Sydney

    Google Scholar 

  • Hagerman S, Sakakibara S, Durall D (2001) The potential for woody understory plants to provide refuge for ectomycorrhizal inoculum at an interior Douglas-fir forest after clear-cut logging. Can J For Res 31:711–721. doi:10.1139/cjfr-31-4-711

    Article  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407. doi:10.1111/j.1461-0248.2009.01430.x

    Article  PubMed  Google Scholar 

  • Horton T, Bruns T (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871. doi:10.1046/j.0962-1083.2001.01333.x

    Article  PubMed  CAS  Google Scholar 

  • Hrynkiewicz K, Baum C, Leinweber P (2009) Mycorrhizal community structure, microbial biomass P and phosphatase activities under Salix polaris as influenced by nutrient availability. Euro J Soil Biol 45:168–175

    Google Scholar 

  • Johnstone J, Chapin F (2006) Effects of soil burn severity on post-fire tree recruitment in boreal forest. Ecosystems 9:14–31. doi:10.1007/s10021-004-0042-x

    Article  Google Scholar 

  • Jones MD, Durall DM, Cairney JWG (2003) Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399–442. doi:10.1046/j.1469-8137.2003.00698.x

    Article  Google Scholar 

  • Jones MD, Twieg BD, Ward V, Barker J, Durall DM, Simard SW (2010) Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Funct Ecol 24:1139–1151. doi:10.1111/j.1365-2435.2010.01699.x

    Article  Google Scholar 

  • Jumpponen A, Egerton-Warburton LM (2005) Mycorrhizal fungi in successional environments: a community assembly model incorporating host plant, environmental, and biotic filters. Mycol Ser 23:139

    Google Scholar 

  • Karst J, Hoeksema JD, Jones MD, Turkington R (2011) Parsing the roles of abiotic and biotic factors in Douglas-fir seedling growth. Pedobiologia 54:273–280. doi:10.1016/j.pedobi.2011.05.002

    Article  Google Scholar 

  • Kernaghan G (2005) Mycorrhizal diversity: cause and effect? Pedobiologia 49:511–520. doi:10.1016/j.pedobi.2005.05.007

    Article  Google Scholar 

  • Keyser TL, Smith FW, Shepperd WD (2010) Growth response of Pinus ponderosa following a mixed-severity wildfire in the black hills, South Dakota. West J Appl For 25:49–54

    Google Scholar 

  • Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J (2011) Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the central Alps. Oecologia 167:219–228. doi:10.1007/s00442-011-1981-5

    Article  PubMed  Google Scholar 

  • Kitajima K, Fenner M (2000) Ecology of seedling regeneration. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities. CABI, New York, pp 331–359

    Chapter  Google Scholar 

  • Koide RT, Fernandez C, Petprakob K (2011) General principles in the community ecology of ectomycorrhizal fungi. Ann For Sci 68:45–55. doi:10.1007/s13595-010-0006-6

    Article  Google Scholar 

  • Lloyd D, Angove K, Hope G, Thompson C (1990) A guide to site identification and interpretation for the Kamloops forest region. Ministry of Forests, Victoria

    Google Scholar 

  • Martin K, Rygiewicz P (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28. doi:10.1186/1471-2180-5-28

    Article  PubMed  Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD: multivariate analysis of ecological data. MjM Software Version 5.0. Gleneden Beach, Oregon, USA

  • McGuire KL (2007) Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88:567–574. doi:10.1890/05-1173

    Article  PubMed  Google Scholar 

  • McRae DJ, Duchesne LC, Freedman B, Lynham TJ, Woodley S (2001) Comparisons between wildfire and forest harvesting and their implications in forest management. Environ Rev 9:223–260. doi:10.1139/er-9-4-223

    Article  CAS  Google Scholar 

  • Miller S, McClean T, Stanton N, Williams S (1998) Mycorrhization, physiognomy, and first-year survivability of conifer seedlings following natural fire in Grand Teton national park. Can J For Res 28:115–122. doi:10.1139/cjfr-28-1-115

    Article  Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122:51–71. doi:10.1016/S0378-1127(99)00032-8

    Article  Google Scholar 

  • Nitschke CR, Innes JL (2008) Climatic change and fire potential in south-central British Columbia, Canada. Glob Chang Biol 14:841–855. doi:10.1111/j.1365-2486.2007.01517.x

    Article  Google Scholar 

  • NRC (1998) The Canadian system of soil classification. NRC Research Press, Ottawa

    Google Scholar 

  • Nunez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359. doi:10.1890/08-2139.1

    Article  PubMed  Google Scholar 

  • Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, New York

  • Oswald BP, Wellner K, Boyce R, Neuenschwander LF (1998) Germination and initial growth of four coniferous species on varied duff depths in northern Idaho. J Sustain For 8:11–21

    Article  Google Scholar 

  • Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M (2007) A strong species-area relationship for eukaryotic soil microbes: Island size matters for ectomycorrhizal fungi. Ecol Lett 10:470–480. doi:10.1111/j.1461-0248.2007.01035.x

    Article  PubMed  Google Scholar 

  • Peay KG, Garbelotto M, Bruns TD (2009) Spore heat resistance plays an important role in disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings. J Ecol 97:537–547. doi:10.1111/j.1365-2745.2009.01489.x

    Article  Google Scholar 

  • Perry DA, Amaranthus M, Borchers J, Borchers S, Brainerd R (1989) Bootstrapping in ecosystems. Bioscience 39:230–237

    Article  Google Scholar 

  • Purdy BG, Macdonald SE, Dale MRT (2002) The regeneration niche of white spruce following fire in the mixed wood boreal forest. Silva Fenn 36:289–306

    Google Scholar 

  • Rosling A, Landeweert R, Lindahl B, Larsson K, Kuyper T, Taylor A, Finlay R (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783. doi:10.1046/j.1469-8137.2003.00829.x

    Article  CAS  Google Scholar 

  • Smith J, McKay D, Niwa C, Thies W, Brenner G, Spatafora J (2004) Short-term effects of seasonal prescribed burning on the ectomycorrhizal fungal community and fine root biomass in Ponderosa Pine stands in the blue mountains of Oregon. Can J For Res 34:2477–2491. doi:10.1139/X04-124

    Article  CAS  Google Scholar 

  • Smith J, McKay D, Brenner G, McIver J, Spatafora J (2005) Early impacts of forest restoration treatments on the ectomycorrhizal fungal community and fine root biomass in a mixed conifer forest. J Appl Ecol 42:526–535. doi:10.1111/j.1365-2664.2005.01047.x

    Article  Google Scholar 

  • Stendell E, Horton T, Bruns T (1999) Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada Ponderosa Pine forest. Mycol Res 103:1353–1359. doi:10.1017/S0953756299008618

    Article  Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: resident colonizers and resistant propagules overlap in space but are dominated by different species. Mol Ecol 8:1837–1850

    Google Scholar 

  • Teste FP, Simard SW, Durall DM (2009) Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fung Ecol 2:21–30. doi:10.1016/j.funeco.2008.11.003

    Article  Google Scholar 

  • Treseder K, Mack M, Cross A (2004) Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol Appl 14:1826–1838. doi:10.1890/03-5133

    Article  Google Scholar 

  • Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447. doi:10.1111/j.1469-8137.2007.02173.x

    Article  PubMed  Google Scholar 

  • Vyse A, Smith RA, Bondar BG (1991) Management of interior Douglas-fir stands in British Columbia: past, present and future. In: Baugartner DM, Lotan JE (eds) Interior Douglas-fir: the species and its management, symposium proceedings. Washington State University, Pullman, pp 177–185

    Google Scholar 

  • Wicklow DHB (1979) Competitive hierarchy in post-fire ascomycetes. Mycologia 71:47–54. doi:10.2307/3759220

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to the reviewers for their insightful critiques. Funding for this research was provided by a NSERC SRO grant to Jones, Simard, and Durall, and a Forest Innovation Investment, Forest Sciences Program grant to Simard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Barker.

Additional information

Communicated by Hakan Wallander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barker, J.S., Simard, S.W., Jones, M.D. et al. Ectomycorrhizal fungal community assembly on regenerating Douglas-fir after wildfire and clearcut harvesting. Oecologia 172, 1179–1189 (2013). https://doi.org/10.1007/s00442-012-2562-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2562-y

Keywords

Navigation