Skip to main content
Log in

Carotenoid-based plumage colouration is associated with blood parasite richness and stress protein levels in blue tits (Cyanistes caeruleus)

  • Physiological ecology - Original paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Carotenoids are molecules that birds are not able to synthesize and therefore, must be acquired through their diet. These pigments, besides their function of giving birds red and yellow colouration when deposited in feathers, seem to act as immune-stimulators and antioxidants in the organism. Hence, only the healthiest individuals would be able to express carotenoid-based ornaments to a larger extent without compromising the physiological functions of carotenoids. Various studies have reported that birds infected by parasites are paler than those uninfected, but, to our knowledge, none of them has assessed the possible effect of multiple infections by blood parasites on plumage colour. By comparing the yellow colour in the breast plumage of blue tits, Cyanistes caeruleus, between birds infected by different numbers of blood parasite genera, we found that those birds infected by more than one genus were paler than those parasitized just by one. In addition, we examined the potential role of carotenoid-based plumage colour of blue tits as a long-term indicator of other parameters of health status, such as body condition and immunoglobulin and heat shock protein (HSP) levels. Our results indicate that more brightly coloured birds had lower HSP70 levels than paler birds, but we did not find any significant association between colour and body condition or immunoglobulin levels. In addition, we found a positive significant association between Haemoproteus density of infection and HSP60 levels. Overall, these results support the role of carotenoid-based colours as indicators of health status in blue tits and show detrimental effects of parasitism on this character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso-Álvarez C, Bertrand S, Devevey G, Gaillard M, Prost J, Faivre B, Sorci G (2004) An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity. Am Nat 164:651–659

    Article  PubMed  Google Scholar 

  • Amundsen T (2000) Why are females birds ornamented? Trends Ecol Evol 15:149–155

    Article  PubMed  Google Scholar 

  • Andersson S, Prager M (2005) Quantifying colors. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 1. Mechanism and measurements. Harvard University Press, Cambridge, pp 41–89

    Google Scholar 

  • Arriero E, Fargallo JA (2006) Habitat structure is associated with the expression of carotenoid-based coloration in nestling blue tits, Parus caeruleus. Naturwissenschaften 93:173–180

    Article  CAS  PubMed  Google Scholar 

  • Arriero E, Møller AP (2008) Host ecology and life-history traits associated with blood parasite species richness in birds. J Evol Biol 21:1504–1513

    Article  CAS  PubMed  Google Scholar 

  • Arriero E, Moreno J, Merino S, Martínez J (2008) Habitat effects on physiological stress response in nestling blue tits are mediated through parasitism. Physiol Biochem Zool 81:195–203

    Article  PubMed  Google Scholar 

  • Beadell JS, Gering E, Austin J, Dumbacher JP, Peirce MA, Pratt TK, Atkinson CT, Fleischer RC (2004) Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region. Mol Ecol 13:3829–3844

    Article  PubMed  Google Scholar 

  • Brawner WR III, Hill GE, Sundermann CA (2000) Effects of coccidial and mycoplasmal infections on carotenoid-based plumage pigmentation in male house finches. Auk 117:952–963

    Article  Google Scholar 

  • Chew BP (1993) Role of carotenoids in the immune response. J Dairy Sci 76:2804–2811

    Article  CAS  PubMed  Google Scholar 

  • Clayton DH (1990) Mate choice in experimentally parasitized Rock Doves: lousy males lose. Am Zool 30:251–262

    Google Scholar 

  • Clayton DH (1991) The influence of parasites on host sexual selection. Parasitol Today 7:329–334

    Article  CAS  PubMed  Google Scholar 

  • Costantini D, Møller AP (2008) Carotenoids are minor antioxidants for birds. Funct Ecol 22:367–370

    Article  Google Scholar 

  • Cramp S (1998) The complete birds of the western palearctic. CD-ROM. Oxford University Press, Oxford

    Google Scholar 

  • Davidar P, Morton ES (2006) Are multiple infections more severe for purple martins (Progne subis) than single infections? Auk 123:141–147

    Article  Google Scholar 

  • de Roode JC, Helinski MEH, Anwar MA, Read AF (2005) Dynamics of multiple infection and within-host competition in genetically diverse malaria infections. Am Nat 166:531–542

    Article  PubMed  Google Scholar 

  • Deerenberg C, Apanius V, Daan S, Bos N (1997) Reproductive effort decreases antibody responsiveness. Proc R Soc Lond B Biol Sci 264:1021–1029

    Article  Google Scholar 

  • Doutrelant C, Grégoire A, Grnac N, Gómez D, Lambrechts MM, Perret P (2008) Female coloration indicates female reproductive capacity in blue tits. J Evol Biol 21:226–233

    CAS  PubMed  Google Scholar 

  • Dufva R, Allander K (1995) Intraspecific variation in plumage coloration reflects immune-response in Great Tit (Parus major) males. Funct Ecol 9:785–789

    Article  Google Scholar 

  • Evans M, Otter A (1998) Fatal combined infection with Haemoproteus noctuae and Leucocytozoon ziemanni in juvenile snowy owls (Nyctea scandiaca). Vet Rec 143:72–76

    CAS  PubMed  Google Scholar 

  • Ferns PN, Hinsley SA (2008) Carotenoid plumage hue and chroma signal different aspects of individual and habitat quality in tits. Ibis 150:152–159

    Google Scholar 

  • Figuerola J, Senar JC, Pascual J (1999) The use of a colorimeter in field studies of blue tit Parus caeruleus coloration. Ardea 87:269–275

    Google Scholar 

  • Fitze PS, Tschirren B, Gasparini J, Richner H (2007) Carotenoid-based plumage colors and immune function: is there a trade-off for rare carotenoids? Am Nat 169:S137–S144

    Article  PubMed  Google Scholar 

  • Frank SA (1996) Models of parasite virulence. Q Rev Biol 71:37–78

    Article  CAS  PubMed  Google Scholar 

  • Garbe TR (1992) Heat shock proteins and infection: interactions of pathogen and hosts. Experientia 48:635–639

    Article  CAS  PubMed  Google Scholar 

  • Gehring WJ, Wehner R (1995) Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proc Natl Acad Sci USA 92:2994–2998

    Article  CAS  PubMed  Google Scholar 

  • Goodwin TW (1984) The biochemistry of the carotenoids, vol 2. Animals. Chapman and Hall, London

    Google Scholar 

  • Graham AL, Lamb TJ, Read AF, Allen JE (2005) Malaria-filaria co-infection in mice makes malarial disease more severe unless filarial infection achieves patency. J Infect Dis 191:410–421

    Article  PubMed  Google Scholar 

  • Hadfield JD, Owens IPF (2006) Strong environmental determination of a carotenoid-based plumage trait is not mediated by carotenoid availability. J Evol Biol 19:1104–1114

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387

    Article  CAS  PubMed  Google Scholar 

  • Hartley RC, Kennedy MW (2004) Are carotenoids a red herring in sexual display? Trends Ecol Evol 19:353–354

    Article  PubMed  Google Scholar 

  • Hidalgo-García S (2006) The carotenoid-based plumage coloration of adult blue tits Cyanistes caeruleus correlates with the health status of their brood. Ibis 148:727–734

    Article  Google Scholar 

  • Hill GE (1991) Plumage coloration is a sexually selected indicator of male quality. Nature 350:337–339

    Article  Google Scholar 

  • Hill GE (1992) Proximate basis of variation in carotenoid pigmentation in male house finches. Auk 109:1–12

    Google Scholar 

  • Hõrak P, Vellau H, Ots I, Møller AP (2000) Growth conditions affect carotenoid-based plumage coloration of great tit nestlings. Naturwissenschaften 87:460–464

    Article  PubMed  Google Scholar 

  • Hõrak P, Ots I, Vellau H, Spottiswoode C, Møller AP (2001) Carotenoid-based plumage coloration reflects hemoparasite infection and local survival in breeding great tits. Oecologia 126:166–173

    Article  Google Scholar 

  • Hunt S, Bennett ATD, Cuthill IC, Griffiths R (1998) Blue tits are ultraviolet tits. Proc R Soc Lond B Biol Sci 265:451–455

    Article  Google Scholar 

  • Kraaijeveld K, Kraaijeveld-Smit FJL, Komdeur J (2007) The evolution of mutual ornamentation. Anim Behav 74:657–677

    Article  Google Scholar 

  • Lande R (1980) Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34:292–305

    Article  Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121

    Google Scholar 

  • Lozano GA (1994) Carotenoids, parasites, and sexual selection. Oikos 70:309–311

    Article  Google Scholar 

  • MacDougall AK, Montgomerie R (2003) Assortative mating by carotenoid-based plumage colour: a quality indicator in American goldfinches, Carduelis tristis. Naturwissenschaften 90:464–467

    Article  CAS  PubMed  Google Scholar 

  • Mariño F, Winters C, Morgan AJ (1999) Heat shock protein (hsp60, hsp70, hsp90) expression in earthworms exposed to metal stressors in the field and laboratory. Pedobiologia 43:615–624

    Google Scholar 

  • Martínez J, Pérez-Serrano J, Bernadina WE, Rodríguez-Caabeiro F (1999a) In vitro stress response to elevated temperature, hydrogen peroxide and mebendazole in Trichinella spiralis muscle larvae. Int J Parasitol 29:1457–1464

    Article  PubMed  Google Scholar 

  • Martínez J, Pérez-Serrano J, Bernadina WE, Rodríguez-Caabeiro F (1999b) Influence of parasitization by Trichinella spiralis on the levels of heat shock proteins in rat liver and muscle. Parasitology 118:201–209

    Article  PubMed  Google Scholar 

  • Martínez J, Pérez-Serrano J, Bernadina WE, Rodríguez-Caabeiro F (2001) Stress response to cold in Trichinella species. Cryobiology 43:293–302

    Article  PubMed  CAS  Google Scholar 

  • Martínez J, Tomás G, Merino S, Arriero E, Moreno J (2003) Detection of serum immunoglobulins in wild birds by direct ELISA: a methodological study to validate the technique in different species using antichicken antibodies. Funct Ecol 17:700–706

    Article  Google Scholar 

  • Martínez-de la Puente J, Merino S, Tomás G, Moreno J, Morales J, Lobato E (2006) Are multiple gametocyte infections in malarial parasites an adaptation to ensure fertility? Parasitology 132:23–28

    Article  PubMed  Google Scholar 

  • Martínez-de la Puente J, Merino S, Moreno J, Tomás G, Morales J, Lobato E, García-Fraile S, Martínez J (2007a) Are eggshell spottiness and color indicators of health and condition in blue tits Cyanistes caeruleus? J Avian Biol 38:377–384

    Google Scholar 

  • Martínez-de la Puente J, Merino S, Tomás G, Moreno J, Morales J, Lobato E, García-Fraile S (2007b) Can the host immune system promote multiple invasions of erythrocytes in vivo? Differential effects of medication and host sex in a wild malaria-like model. Parasitology 134:651–655

    Article  PubMed  CAS  Google Scholar 

  • Marzal A, Bensch S, Reviriego M, Balbontin J, de Lope F (2008) Effects of malaria double infections in birds: one plus one is not two. J Evol Biol 21:979–987

    Article  CAS  PubMed  Google Scholar 

  • Maslov DA, Lukes J, Jirku M, Simpson L (1996) Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasit 75:197–205

    Article  CAS  Google Scholar 

  • McGraw KJ, Ardia DR (2003) Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test. Am Nat 162:704–712

    Article  PubMed  Google Scholar 

  • McGraw KJ, Hill GE (2004) Plumage color as a dynamic trait: carotenoid pigmentation of male house finches (Carpodacus mexicanus) fades during the breeding season. Can J Zool 82:734–738

    Article  Google Scholar 

  • Merilä J, Sheldon BC, Lindström K (1999) Plumage brightness in relation to haematozoan infections in the greenfinch Carduelis chloris: bright males are a good bet. Ecoscience 6:12–18

    Google Scholar 

  • Merino S, Potti J, Fargallo JA (1997) Blood parasites of some passerine birds from central Spain. J Wildl Dis 33:638–641

    CAS  PubMed  Google Scholar 

  • Merino S, Martínez J, Barbosa A, Møller AP, De Lope F, Pérez J, Rodríguez-Caabeiro F (1998) Increase in a heat shock protein from blood cells in response to parasitism of nestling house martins (Delichon urbica): an experimental approach. Oecologia 116:343–347

    Article  Google Scholar 

  • Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Soc Lond B Biol Sci 267:2507–2510

    Article  CAS  Google Scholar 

  • Merino S, Martínez J, Møller AP, Barbosa A, de Lope F, Rodríguez-Caabeiro F (2002) Blood stress protein levels in relation to sex and parasitism of barn swallows (Hirundo rustica). Ecoscience 9:300–305

    Google Scholar 

  • Merino S, Moreno J, Tomás G, Martínez J, Morales J, Martínez-De La Puente J, Osorno JL (2006) Effects of parental effort on blood stress protein HSP60 and immunoglobulins in female blue tits: a brood size manipulation experiment. J Anim Ecol 75:1147–1153

    Article  PubMed  Google Scholar 

  • Merino S, Moreno J, Vásquez RA, Martínez J, Sánchez-Monsálvez I, Estades CF, Ippi S, Sabat P, Rozzi R, Mcgehee S (2008) Haematozoa in forest birds from southern Chile: latitudinal gradients in prevalence and parasite lineage richness. Austral Ecol 33:329–340

    Article  Google Scholar 

  • Møller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai PF (2000) Carotenoid dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poult Biol Rev 11:137–159

    Google Scholar 

  • Moreno J, Sanz JJ, Arriero E (1999) Reproductive effort and T-lymphocyte cell-mediated immunocompetence in female pied flycatchers Ficedula hypoleuca. Proc R Soc Lond B Biol Sci 266:1105–1109

    Article  Google Scholar 

  • Moreno J, Lobato E, Morales J, Merino S, Martínez-De La Puente J, Tomás G (2008) Pre-laying nutrition mediates maternal effects on offspring immune capacity and growth in the pied flycatcher. Oecologia 156:727–735

    Article  PubMed  Google Scholar 

  • Morimoto RI (1991) Heat shock: the role of transient inducible responses in cell damage, transformation, and differentiation. Cancer Cell 3:295–301

    CAS  Google Scholar 

  • Moseley P (2000) Stress proteins and the immune response. Immunopharmacology 48:299–302

    Article  CAS  PubMed  Google Scholar 

  • Norris K, Evans MR (2000) Ecological immunology: life history trade-offs and immune defence in birds. Behav Ecol 11:19–26

    Article  Google Scholar 

  • Olson VA, Owens IPF (1998) Costly sexual signals: are carotenoids rare, risky or required? Trends Ecol Evol 13:510–514

    Article  Google Scholar 

  • Örnborg J (2002) Ultraviolet coloration and colour communication in blue tits, Parus caeruleus. Dissertation, Goteborg University

  • Pérez C, Lores M, Velando A (2008) The availability of nonpigmentary antioxidant affects red coloration in gulls. Behav Ecol 19:967–973

    Article  Google Scholar 

  • Read AF (1990) Parasites and evolution of host behavior. In: Barnard CJ, Behnke JM (eds) Parasitism and host behaviour. Taylor & Francis, London, pp 117–157

    Google Scholar 

  • Read AF, Taylor LH (2000) Within-host ecology of infectious diseases: patterns and consequences. In: Thompson RCA (ed) Molecular epidemiology of infectious diseases. Arnold, London, pp 59–75

    Google Scholar 

  • Roitt I, Brostoff J, Male D (1996) Immunology, 4th edn. Mosby, London

    Google Scholar 

  • Senar JC, Figuerola J, Pascual J (2002) Brighter yellow blue tits make better parents. Proc R Soc Lond B Biol Sci 269:257–261

    Article  CAS  Google Scholar 

  • Senar JC, Figuerola J, Domènech J (2003) Plumage coloration and nutritional condition in the great tit Parus major: the roles of carotenoids and melanins differ. Naturwissenschaften 90:234–237

    CAS  PubMed  Google Scholar 

  • Senar JC, Negro JJ, Quesada J, Ruiz I, Garrido J (2008) Two pieces of information in a single trait? The yellow breast of the great tit (Parus major) reflects both pigment acquisition and body condition. Behaviour 145:1195–1210

    Article  Google Scholar 

  • Seutin G (1994) Plumage redness in redpoll finches does not reflect hemoparasitic infections. Oikos 70:280–286

    Article  Google Scholar 

  • Slagsvold T, Lifjeld JT (1985) Variation in plumage colour of the great tit Parus major in relation to habitat, season and food. J Zool 206:321–328

    Google Scholar 

  • Soler JJ, de Neve L, Pérez-Contreras T, Soler M, Sorci G (2002) Trade-off between immunocompetence and growth in magpies: an experimental study. Proc R Soc Lond B Biol Sci 270:241–248

    Article  Google Scholar 

  • Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  • Sundberg J (1995) Parasites, plumage coloration and reproductive success in the yellowhammer, Emberiza citrinella. Oikos 74:331–339

    Article  Google Scholar 

  • Surai PF, Speake BK (1998) Distribution of carotenoids from the yolk to the tissues of the chick embryo. J Nutr Biochem 9:645–651

    Article  CAS  Google Scholar 

  • Surai PF, Speake BK, Sparks NHC (2001) Carotenoids in avian nutrition and embryonic development. 2. Antioxidant properties and discrimination in embryonic tissues. J Poult Sci 38:117–145

    Article  CAS  Google Scholar 

  • Svensson L (1992) Identification guide to european passerines, 4th edn. Svensson, Stockholm

    Google Scholar 

  • Tomás G, Martínez J, Merino S (2004) Collection and analysis of blood samples to detect stress proteins in wild birds. J Field Ornithol 75:281–287

    Google Scholar 

  • Tomás G, Merino S, Martínez J, Moreno J, Sanz JJ (2005) Stress protein levels and blood parasite infection in blue tits (Parus caeruleus): a medication field experiment. Ann Zool Fenn 42:45–56

    Google Scholar 

  • Tomás G, Merino S, Moreno J, Morales J, Martínez-de la Puente J (2007) Impact of blood parasites on immunoglobulin level and parental effort: a medication field experiment on a wild passerine. Funct Ecol 21:125–133

    Article  Google Scholar 

  • Tomás G, Merino S, Martínez-de La Puente J, Moreno J, Morales J, Lobato E (2008) Determinants of abundance and effects of blood-sucking flying insects in the nest of a hole-nesting bird. Oecologia 156:305–312

    Article  PubMed  Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other Haemosporidia. CRC, Boca Raton

    Google Scholar 

  • Valkiūnas G, Iezhova TA, Shapoval AP (2003) High prevalence of blood parasites in hawfinch Coccothraustes coccothraustes. J Nat Hist 37:2647–2652

    Article  Google Scholar 

  • von Schantz TV, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999) Good genes oxidative stress and condition-dependent sexual signals. Proc R Soc Lond B Biol Sci 266:1–12

    Article  Google Scholar 

  • Weatherhead PJ (1990) Secondary sexual traits, parasites and polygyny in red-winged blackbirds Agelaius phoeniceus. Behav Ecol 1:125–130

    Article  Google Scholar 

  • Zuk M, Thornhill R, Ligon JD, Johnson K, Austad S, Ligon SH, Thornhill NW, Costin C (1990) The role of male ornaments and courtship behavior in female mate choice of red jungle fowl. Am Nat 136:459–473

    Article  Google Scholar 

Download references

Acknowledgments

We thank Javier Donés (Director of Montes de Valsaín) for permission to work in the study area. The Junta de Castilla y León authorized the ringing and handling of birds. This study was funded by projects BOS2003-05724 and CGL2006-14129-C02-01 of the Ministerio de Educación y Ciencia (to S. M.) and CGL2007-61251 (to J. Moreno). The authors thank Sonia Aracil for their help in the lab. S. d. C., J.-M. P. and R. R. d. C. are supported by grants from the Comunidad de Madrid, El Ventorrillo-CSIC and JAE-CSIC respectively. J. Morales is supported by a postdoctoral grant from the Ministerio de Ciencia y Tecnología. E. L. was supported by a FPU grant from MEC. G. T. was supported at different stages by a FPI grant from the Comunidad de Madrid, an I3P postdoctoral contract from CSIC and a postdoctoral grant from UNAM. J.-R. A. is not supported by any grant. This study is a contribution to the research developed at El Ventorrillo Field station and complies with current Spanish laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara del Cerro.

Additional information

Communicated by Heli Siitari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Cerro, S., Merino, S., Martínez-de la Puente, J. et al. Carotenoid-based plumage colouration is associated with blood parasite richness and stress protein levels in blue tits (Cyanistes caeruleus). Oecologia 162, 825–835 (2010). https://doi.org/10.1007/s00442-009-1510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1510-y

Keywords

Navigation