Skip to main content
Log in

Species-specific allometric scaling under self-thinning: evidence from long-term plots in forest stands

  • Ecosystem Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Experimental plots covering a 120 years’ observation period in unthinned, even-aged pure stands of common beech (Fagus sylvatica), Norway spruce (Picea abies), Scots pine (Pinus sylvestris), and common oak (Quercus Petraea) are used to scrutinize Reineke’s (1933) empirically derived stand density rule ( \(N \propto \bar d^{-1.605} \), N = tree number per unit area, \(\bar{d}\) = mean stem diameter), Yoda’s (1963) self-thinning law based on Euclidian geometry (\(\bar w \propto N^{- 3/2}, \) \(\bar w\) = mean biomass per tree), and basic assumptions of West, Brown and Enquist’s (1997, 1999) fractal scaling rules (\(w \propto d^{8/3}, \) \(\bar w \propto N^{-4/3}, \) w = biomass per tree, d = stem diameter). RMA and OLS regression provides observed allometric exponents, which are tested against the exponents, expected by the considered rules. Hope for a consistent scaling law fades away, as observed exponents significantly correspond with the considered rules only in a minority of cases: (1) exponent r of \(N \propto \bar d^r \) varies around Reineke’s constant −1.605, but is significantly different from r=−2, supposed by Euclidian or fractal scaling, (2) Exponent c of the self-thinning line \(\bar w \propto N^c \) roams roughly about the Euclidian scaling constant −3/2, (3) Exponent a of \(w \propto d^a \) tends to follow fractal scaling 8/3. The unique dataset’s evaluation displays that (4) scaling exponents and their oscillation are species-specific, (5) Euclidian scaling of one relation and fractal scaling of another are coupled, depending on species. Ecological implications of the results in respect to self-tolerance (common oak > Norway spruce > Scots pine > common beech) and efficiency of space occupation (common beech > Scots pine > Norway spruce > common oak) are stressed and severe consequences for assessing, regulating and scheduling stand density are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Assmann E (1970) The principles of forest yield study. Pergamon Press Ltd, Oxford

    Google Scholar 

  • Bazzaz FA, Grace J (1997) Plant resource allocation. Academic, San Diego

    Google Scholar 

  • Bégin E, Bégin J, Bélanger L, Rivest L-P, Tremblay St (2001) Balsam fir self-thinning relationship and its constancy among different ecological regions. Can J For Res 31:950–959

    Article  Google Scholar 

  • Begon ME, Harper JL, Townsend CR (1998) Ökologie. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Bohonak AJ (2002) RMA. Software for reduced major axis regression, v. 1.14b, San Diego University. http://www.bio.sdsu.edu/pub/andy/rma.html

  • Ducey MJ, Larson BC (1999) Accounting for bias and uncertainty in nonlinear stand density indices. For Sci 45(3):452–457

    Google Scholar 

  • Eid T, Tuhus E (2001) Models for individual tree mortality in Norway. For Ecol Manage 154:69–84

    Article  Google Scholar 

  • Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature 410:655–660

    Article  PubMed  CAS  Google Scholar 

  • Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165

    Article  CAS  Google Scholar 

  • Enquist BJ, West GB, Charnov EL, Brown JH (1999) Allometric scaling of production and life-history variation in vascular plants. Nature 401:907–911

    Article  CAS  Google Scholar 

  • Foerster W (1990) Zusammenfassende ertragskundliche Auswertung der Kiefern-Düngungsversuchsflächen in Bayern. Forstl Forschungsberichte München 105:1–328

    Google Scholar 

  • Foerster W (1993) Der Buchen-Durchforstungsversuch Mittelsinn 025. Allgemeine Forstzeitschrift 48:268–270

    Google Scholar 

  • Franz F, Röhle H, Meyer F (1993) Wachstumsgang und Ertragsleistung der Buche. Allgemeine Forstzeitschrift 48:262–267

    Google Scholar 

  • Gadow v K (1986) Observation on self-thinning in pine plantations. South African J Sci 82:364–368

    Google Scholar 

  • Grote R, Schuck J, Block J, Pretzsch H (2003) Oberirdische holzige Biomasse in Kiefern-/Buchen- und Eichen-/Buchen-Mischbeständen. Forstw Cbl 122:287–301

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic, London New York

    Google Scholar 

  • Kennel R (1972) Die Buchendurchforstungsversuche in Bayern von 1870 bis 1970. Forstl Forschungsberichte München 7:1–264

    Google Scholar 

  • Kira T, Ogawa H, Sakazaki N (1953) Intraspecific competition among higher plants, I. Competition-yield-density interrelationship in regularly dispersed populations J Inst Polytech (Osaka City University) Ser D:1–16

  • Körner Ch (2002) Ökologie. In: Sitte P, Weiler EW, Kadereit JW, Bresinsky A, Körner Ch (eds) Strasburger Lehrbuch für Botanik, 35th edn. Spektrum Akademischer Verlag, Heidelberg Berlin, pp 886–1043

    Google Scholar 

  • Kozlowski J, Konarzewski M (2004) Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct Ecol 18:283–289

    Article  Google Scholar 

  • Kramer H, Helms JA (1985) Zur Verwendung und Aussagefähigkeit von Bestandesdichteindizes bei Douglasie. Forstw Cbl 104:36–49

    Article  Google Scholar 

  • Küsters E (2001) Wachstumstrends der Kiefer in Bayern. PhD thesis, Wissenschaftszentrum Weihenstephan, Technische Universität München

  • Long JN, Smith FW (1984) Relation between size and density in developing stands: a description and possible mechanisms. For Ecol Manage 7:191–206

    Article  Google Scholar 

  • Mayer R (1958) Kronengröße und Zuwachsleistung der Traubeneiche auf süddeutschen Standorten. Allg Forst- u Jgdztg 129:105–114, 151–201

  • Niklas KJ (1994) Plant Allometry. University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ, Midgley JJ, Enquist BJ (2003) A general model for mass–growth–density relations across tree-dominated communities. Evol Ecol Res 5:459–468

    Google Scholar 

  • Oliver CD, Larson BC (1990) Forest stand dynamics biological resource management series. McGraw-Hill, New York

    Google Scholar 

  • Pittman SD, Turnblom EC (2003) A study of self-thinning using coupled loometric equations: implications for costal Douglas-fir stand dynamics. Can J For Res 33:1161–1669

    Article  Google Scholar 

  • Prairie YT, Bird DF (1989) Some misconceptions about the spurious correlation problem in the ecological literature. Oecologia 81:285–288

    Google Scholar 

  • Pretzsch H (1985) Wachstumsmerkmale süddeutscher Kiefernbestände in den letzten 25 Jahren. Forstl Forschungsberichte München 65:1–183

    Google Scholar 

  • Pretzsch H (2002) A unified law of spatial allometry for woody and herbaceous plants. Plant Biol 4:159–166

    Article  Google Scholar 

  • Pretzsch H, Biber P (2004) A re-evaluation of Reineke’s rule and stand density index. For Sci (accepted)

  • Pretzsch H, Utschig H (2000) Wachstumstrends der Fichte in Bayern. Mitt Bay Staatsforstverw 49:1–170

    Google Scholar 

  • Puettmann KJ, Hibbs DE, Hann DW (1992) The dynamics of mixed stands of Alnus rubra and Pseudotsuga menziesii: extension of size-density analysis to species mixtures. J Ecol 80(3):449–458

    Article  Google Scholar 

  • Puettmann KJ, Hann DW, Hibbs DE (1993) Evaluation of the size-density relationship for pure red elder and Douglas-fir stands. For Sci 37:574–592

    Google Scholar 

  • Reineke LH (1933) Perfecting a stand density index for even-aged forests. J Agric Res 46:627–638

    Google Scholar 

  • Roderick ML, Barnes B (2004) Self-thinning of plant populations from a dynamic viewpoint. Funct Ecol 18:197–203

    Article  Google Scholar 

  • Röhle H (1994) Zum Wachstum der Fichte auf Hochleistungsstandorten in Südbayern. Habil-schrift, Universität München, Freising

  • Sackville Hamilton NR, Matthew C, Lemaire G (1995) In defence of the −3/2 boundary rule: a re-evaluation of self-thinning concepts and status. An Bot 76:569–577

    Article  Google Scholar 

  • Sterba H (1981) Natürlicher Bestockungsgrad und Reinekes SDI. Centralbl f d ges Forstw 98:101–116

    Google Scholar 

  • Sterba H (1987) Estimating potential density from thinning experiments and inventory data. For Sci 33:1022–1034

    Google Scholar 

  • Sterba H, Monserud RA (1993) The maximum density concept appled ton uneven-aged mixed stands. For Sci 39:432–452

    Google Scholar 

  • Stoll P, Weiner J, Muller-Landau H, Müller E, Hara T (2002) Size symmetry of competition alters biomass–density relationships. Proc R Soc Lond B Biol Sci 269:2191–2195

    Article  Google Scholar 

  • Trendelenburg R, Mayer-Wegelin H (1955) Das Holz als Rohstoff. Hanser Verlag, Meunchen

    Google Scholar 

  • Utschig H, Pretzsch H (2001) Der Eichen-Durchforstungsversuch Waldleiningen 88. Forstw Cbl 120:90–113

    Article  Google Scholar 

  • Verein Deutscher Forstlicher Versuchsanstalten (1902) Beratungen der vom Vereine Deutscher Forstlicher Versuchsanstalten eingesetzten Kommission zur Feststellung des neuen Arbeitsplanes für Durchforstungs- und Lichtungsversuche. Allg Forst- u Jgdztg 78:180–184

    Google Scholar 

  • Weller DE (1987) A reevaluation of the −3/2 power rule of plant self-thinning. Ecol Monogr 57:23–43

    Article  Google Scholar 

  • Weller DE (1990) Will the real self-thinning rule please stand up? a reply to Osawa and Sugita. Ecology 71:1204–1207

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  PubMed  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400: 664–667

    Article  CAS  Google Scholar 

  • White J (1981) The allometric interpretation of the self-thinning rule. J Theor Biol 89:475–500

    Article  Google Scholar 

  • Whitfield J (2001) All creatures great and small. Nature 413:342–344

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Hagihara A (2002) Growth analysis on the C-D effect in self-thinning Masson pine (Pinus massoniana) stands. For Ecol Manage 165:249–256

    Article  Google Scholar 

  • Yang Y, Titus StJ (2002) Maximum size–density relationship for constraining individual tree mortality functions. For Ecol Manage 168:259–273

    Article  Google Scholar 

  • Yoda KT, Kira T, Ogawa H, Hozumi K (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions. J Inst Polytech (Osaka University) D 14:107–129

    Google Scholar 

  • Zeide B (1985) Tolerance and self-tolerance of trees. For Ecol Manage 13:149–166

    Article  Google Scholar 

  • Zeide B (1987) Analysis of the 3/2 power law of self-thinning. For Sci 33:517–537

    Google Scholar 

  • Zeide B (2001) Natural thinning and environmental change: an ecological process model. For Ecol Manage 154:165–177

    Article  Google Scholar 

  • Zeide B (2004) How to measure stand density. Trees (in press)

Download references

Acknowledgements

The author wishes to thank the Deutsche Forschungsgemeinschaft for providing funds for forest growth and yield research as part of the Sonderforschungsbereich 607 “Growth and Parasite Defense” and the Bavarian State Ministry for Agriculture and Forestry for permanent support of the Forest Yield Science Project W 07. Prof. Dr. Hermann Spellmann of the Lower Saxony Forest Research Station in Göttingen complemented the Bavarian dataset with two experimental plots from the former Prussian Forest Research Station. Thanks are also due to Prof. Dr. Boris Zeide for helpful discussion, Hans Herling for preparation of graphs and anonymous reviewers, for constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Pretzsch.

Additional information

Communicated by Christian Koerner

Communicated by Christian Koerner

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pretzsch, H. Species-specific allometric scaling under self-thinning: evidence from long-term plots in forest stands. Oecologia 146, 572–583 (2006). https://doi.org/10.1007/s00442-005-0126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-005-0126-0

Keywords

Navigation