Skip to main content

Advertisement

Log in

Evaluation of an in vivo heterotopic model of osteogenic differentiation of equine bone marrow and muscle mesenchymal stem cells in fibrin glue scaffold

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Autologous mesenchymal stem cells (MSCs) have been used as a potential cell-based therapy in various animal and human diseases. Their differentiation capacity makes them useful as a novel strategy in the treatment of tissue injury in which the healing process is compromised or delayed. In horses, bone healing is slow, taking a minimum of 6–12 months. The osteogenic capacity of equine bone marrow and muscle MSCs mixed with fibrin glue or phosphate-buffered saline (PBS) as a scaffold is assessed. Bone production by the following groups was compared: Group 1, bone marrow (BM) MSCs in fibrin glue; Group 2, muscle (M) MSCs in fibrin glue; Group 3, BM MSCs in PBS; Group 4, M MSCs in PBS and as a control; Group 5, fibrin glue without cells. BM and M MSCs underwent osteogenic stimulation for 48 h prior to being injected intramuscularly into nude mice. After 4 weeks, the mice were killed and muscle samples were collected and evaluated for bone formation and mineralization by using radiology, histochemistry and immunohistochemistry. Positive bone formation and mineralization were confirmed in Group 1 in nude mice based on calcium deposition and the presence of osteocalcin and collagen type I; in addition, a radiopaque area was observed on radiographs. However, no evidence of mineralization or bone formation was observed in Groups 2–5. In this animal model, equine BM MSCs mixed with fibrin glue showed better osteogenic differentiation capacity compared with BM MSCs in PBS and M MSCs in either carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Auer JA, Stick JA (2012) Equine surgery, 4th edn. Elsevier/Saunders, St. Louis

    Google Scholar 

  • Aughey E, Frye FL, Johnston H, Ebrary I (2001) Comparative veterinary histology with clinical correlates. Manson/Veterinary Press, London

    Book  Google Scholar 

  • Bacha WJ, Bacha LM (2011) Color atlas of veterinary histology, 3rd edn. Wiley-Blackwell, Chichester

    Google Scholar 

  • Banks WJ (1986) Applied veterinary histology, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Barry S (2010) Non-steroidal anti-inflammatory drugs inhibit bone healing: a review. Vet Comp Orthop Traumatol 23:385–392

    Article  CAS  PubMed  Google Scholar 

  • Bueno DF, Kerkis I, Costa AM, Martins MT, Kobayashi GS, Zucconi E, Fanganiello RD, Salles FT, Almeida AB, do Amaral CE, Alonso N, Passos-Bueno MR (2009) New source of muscle-derived stem cells with potential for alveolar bone reconstruction in cleft lip and/or palate patients. Tissue Eng Part A 15:427–435

    Article  CAS  PubMed  Google Scholar 

  • Carpenter RS, Goodrich LR, Frisbie DD, Kisiday JD, Carbone B, McIlwraith CW, Centeno CJ, Hidaka C (2010) Osteoblastic differentiation of human and equine adult bone marrow-derived mesenchymal stem cells when BMP-2 or BMP-7 homodimer genetic modification is compared to BMP-2/7 heterodimer genetic modification in the presence and absence of dexamethasone. J Orthop Res 28:1330–1337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cauvin ER, Munroe GA (1998) Septic osteitis of the distal phalanx: findings and surgical treatment in 18 cases. Equine Vet J 30:512–519

    Article  CAS  PubMed  Google Scholar 

  • Crovace A, Lacitignola L, Rossi G, Francioso E (2010) Histological and immunohistochemical evaluation of autologous cultured bone marrow mesenchymal stem cells and bone marrow mononucleated cells in collagenase-induced tendinitis of equine superficial digital flexor tendon. Vet Med Int 2010:250978

    Article  PubMed Central  PubMed  Google Scholar 

  • Dresdale A, Rose EA, Jeevanandam V, Reemtsma K, Bowman FO, Malm JR (1985) Preparation of fibrin glue from single-donor fresh-frozen plasma. Surgery 97:750–755

    CAS  PubMed  Google Scholar 

  • Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13:1299–1312

    Article  CAS  PubMed  Google Scholar 

  • Ferris D, Frisbie D, Kisiday J, McIlwraith CW (2012) In vivo healing of meniscal lacerations using bone marrow-derived mesenchymal stem cells and fibrin glue. Stem Cells Int 2012:691605

    Article  PubMed Central  PubMed  Google Scholar 

  • Godwin EE, Young NJ, Dudhia J, Beamish IC, Smith RK (2012) Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Vet J 44:25–32

    Article  CAS  PubMed  Google Scholar 

  • Hale BW, Goodrich LR, Frisbie DD, McIlwraith CW, Kisiday JD (2012) Effect of scaffold dilution on migration of mesenchymal stem cells from fibrin hydrogels. Am J Vet Res 73:313–318

    Article  CAS  PubMed  Google Scholar 

  • Hance SR, Bramlage LR, Schneider RK, Embertson RM (1992) Retrospective study of 38 cases of femur fractures in horses less than one year of age. Equine Vet J 24:357–363

    Article  CAS  PubMed  Google Scholar 

  • Henrotin Y (2011) Muscle: a source of progenitor cells for bone fracture healing. BMC Med 9:136

    Article  PubMed Central  PubMed  Google Scholar 

  • Ishihara A, Zekas LJ, Litsky AS, Weisbrode SE, Bertone AL (2010a) Dermal fibroblast-mediated BMP2 therapy to accelerate bone healing in an equine osteotomy model. J Orthop Res 28:403–411

    PubMed  Google Scholar 

  • Ishihara A, Zekas LJ, Weisbrode SE, Bertone AL (2010b) Comparative efficacy of dermal fibroblast-mediated and direct adenoviral bone morphogenetic protein-2 gene therapy for bone regeneration in an equine rib model. Gene Ther 17:733–744

    Article  CAS  PubMed  Google Scholar 

  • Ishimura M, Ohgushi H, Habata T, Tamai S, Fujisawa Y (1997) Arthroscopic meniscal repair using fibrin glue. Part I: Experimental study. Arthroscopy 13:551–557

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Yamada Y, Naiki T, Ueda M (2006) Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma. Clin Oral Implants Res 17:579–586

    Article  PubMed  Google Scholar 

  • Kalbermatten DF, Kingham PJ, Mahay D, Mantovani C, Pettersson J, Raffoul W, Balcin H, Pierer G, Terenghi G (2008) Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit. J Plast Reconstr Aesthet Surg 61:669–675

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Lee JH, Ahn HH, Lee JY, Khang G, Lee B, Lee HB, Kim MS (2008) The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds. Biomaterials 29:4420–4428

    Article  CAS  PubMed  Google Scholar 

  • Kisiday JD, Hale BW, Almodovar JL, Lee CM, Kipper MJ, Wayne MC, Frisbie DD (2011) Expansion of mesenchymal stem cells on fibrinogen-rich protein surfaces derived from blood plasma. J Tissue Eng Regen Med 5:600–611

    Article  CAS  PubMed  Google Scholar 

  • Lacitignola L, Crovace A, Rossi G, Francioso E (2008) Cell therapy for tendinitis, experimental and clinical report. Vet Res Commun 32 (Suppl 1):S33–S38

    Article  PubMed  Google Scholar 

  • Liu R, Schindeler A, Little DG (2010) The potential role of muscle in bone repair. J Musculoskelet Neuronal Interact 10:71–76

    CAS  PubMed  Google Scholar 

  • McDuffee LA (2012) Comparison of isolation and expansion techniques for equine osteogenic progenitor cells from periosteal tissue. Can J Vet Res 76:91–98

    PubMed Central  PubMed  Google Scholar 

  • Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474

    Article  PubMed  Google Scholar 

  • Nino-Fong R, McDuffee LA, Esparza Gonzalez BP, Kumar MR, Merschrod SEF, Poduska KM (2013) Scaffold effects on osteogenic differentiation of equine mesenchymal stem cells: an in vitro comparative study. Macromol Biosci 13:348–355

    Article  CAS  PubMed  Google Scholar 

  • Penny J, Harris P, Shakesheff KM, Mobasheri A (2012) The biology of equine mesenchymal stem cells: phenotypic characterization, cell surface markers and multilineage differentiation. Front Biosci 17:892–908

    Article  CAS  Google Scholar 

  • Radtke CL, Nino-Fong R, Esparza Gonzalez BP, Stryhn H, McDuffee LA (2013) Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells. Am J Vet Res 74:790–800

    Article  CAS  PubMed  Google Scholar 

  • Ryu JH, Kim IK, Cho SW, Cho MC, Hwang KK, Piao H, Piao S, Lim SH, Hong YS, Choi CY, Yoo KJ, Kim BS (2005) Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials 26:319–326

    Article  CAS  PubMed  Google Scholar 

  • Schnabel LV, Lynch ME, van der Meulen MC, Yeager AE, Kornatowski MA, Nixon AJ (2009) Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J Orthop Res 27:1392–1398

    Article  CAS  PubMed  Google Scholar 

  • Smith RK, Korda M, Blunn GW, Goodship AE (2003) Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Vet J 35:99–102

    Article  CAS  PubMed  Google Scholar 

  • Song IH, Caplan AI, Dennis JE (2009) In vitro dexamethasone pretreatment enhances bone formation of human mesenchymal stem cells in vivo. J Orthop Res 27:916–921

    Article  CAS  PubMed  Google Scholar 

  • Stewart AA, Byron CR, Pondenis H, Stewart MC (2007) Effect of fibroblast growth factor-2 on equine mesenchymal stem cell monolayer expansion and chondrogenesis. Am J Vet Res 68:941–945

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Ma W, Su F, Wang Y, Liu J, Wang D, Liu H (2011) The osteogenic differentiation of dog bone marrow mesenchymal stem cells in a thermo-sensitive injectable chitosan/collagen/beta-glycerophosphate hydrogel: in vitro and in vivo. J Mater Sci Mater Med 22:2111–2118

    Article  CAS  PubMed  Google Scholar 

  • Toupadakis CA, Wong A, Genetos DC, Cheung WK, Borjesson DL, Ferraro GL, Galuppo LD, Leach JK, Owens SD, Yellowley CE (2010) Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue. Am J Vet Res 71:1237–1245

    Article  PubMed  Google Scholar 

  • Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM (2007) Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 36:613–622

    Article  PubMed  Google Scholar 

  • Wright V, Peng H, Usas A, Young B, Gearhart B, Cummins J, Huard J (2002) BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Mol Ther 6:169–178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Glenda Wright for support and highly valuable comments on the manuscript and Dr. Jonathan Spears (Atlantic Veterinary College, UPEI) for assistance with the laboratory animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie A. McDuffee.

Additional information

This project was supported by an Atlantic Canada Opportunities Agency grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDuffee, L.A., Esparza Gonzalez, B.P., Nino-Fong, R. et al. Evaluation of an in vivo heterotopic model of osteogenic differentiation of equine bone marrow and muscle mesenchymal stem cells in fibrin glue scaffold. Cell Tissue Res 355, 327–335 (2014). https://doi.org/10.1007/s00441-013-1742-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1742-3

Keywords

Navigation