Skip to main content

Advertisement

Log in

Eosinophils in innate immunity: an evolving story

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Eosinophils are innate immune leukocytes found in relatively low numbers within the blood. Terminal effector functions of eosinophils, deriving from their capacity to release their content of tissue-destructive cationic proteins, have historically been considered primary effector mechanisms against specific parasites, and are likewise implicated in tissue damage accompanying allergic responses such as asthma. However, the past decade has seen dramatic advancements in the field of eosinophil immunobiology, revealing eosinophils to also be key participants in many other facets of innate immunity, from bridging innate and adaptive immune responses to orchestrating tissue remodeling events. Here, we review the multifaceted functions of eosinophils in innate immunity that are currently known, and discuss new avenues in this evolving story.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelilah SG, Bouchaib L, Morita M, Delphine A, Marika S, Andre C, Monique C (1998) Molecular characterization of the low-affinity IgE receptor Fc epsilonRII/CD23 expressed by human eosinophils. Int Immunol 10:395–404

    Article  CAS  PubMed  Google Scholar 

  • Abraham D, Rotman HL, Haberstroh HF, Yutanawiboonchai W, Brigandi RA, Leon O, Nolan TJ, Schad GA (1995) Strongyloides stercoralis: protective immunity to third-stage larvae inBALB/cByJ mice. Exp Parasitol 80:297–307

    Article  CAS  PubMed  Google Scholar 

  • Abu-Ghazaleh RI, Dunnette SL, Loegering DA, Checkel JL, Kita H, Thomas LL, Gleich GJ (1992) Eosinophil granule proteins in peripheral blood granulocytes. J Leukoc Biol 52:611–618

    CAS  PubMed  Google Scholar 

  • Abu-Ghazaleh RI, Fujisawa T, Mestecky J, Kyle RA, Gleich GJ (1989) IgA-induced eosinophil degranulation. J Immunol 142:2393–2400

    CAS  PubMed  Google Scholar 

  • Aceves SS, Broide DH (2008) Airway fibrosis and angiogenesis due to eosinophil trafficking in chronic asthma. Curr Mol Med 8:350–358

    Article  CAS  PubMed  Google Scholar 

  • Aceves SS, Newbury RO, Dohil R, Bastian JF, Broide DH (2007) Esophageal remodeling in pediatric eosinophilic esophagitis. J Allergy Clin Immunol 119:206–212

    Article  CAS  PubMed  Google Scholar 

  • Ahlstrom-Emanuelsson CA, Greiff L, Andersson M, Persson CG, Erjefalt JS (2004) Eosinophil degranulation status in allergic rhinitis: observations before and during seasonal allergen exposure. Eur Respir J 24:750–757

    Google Scholar 

  • Akuthota P, Wang HB, Spencer LA, Weller PF (2008) Immunoregulatory roles of eosinophils: a new look at a familiar cell. Clin Exp Allergy 38:1254–1263

    Article  CAS  PubMed  Google Scholar 

  • Al-Rabia MW, Blaylock MG, Sexton DW, Thomson L, Walsh GM (2003) Granule protein changes and membrane receptor phenotype in maturing human eosinophils cultured from CD34+ progenitors. Clin Exp Allergy 33:640–648

    Article  CAS  PubMed  Google Scholar 

  • Archer GT, Hirsch JG (1963) Motion picture studies on degranulation of horse eosinophils during phagocytosis. J Exp Med 118:287–294

    Article  CAS  PubMed  Google Scholar 

  • Bandeira-Melo C, Weller PF (2003) Eosinophils and cysteinyl leukotrienes. Prostaglandins Leukot Essent Fatty Acids 69:135–143

    Article  CAS  PubMed  Google Scholar 

  • Bartemes KR, Cooper KM, Drain KL, Kita H (2005) Secretory IgA induces antigen-independent eosinophil survival and cytokine production without inducing effector functions. J Allergy Clin Immunol 116:827–835

    Article  CAS  PubMed  Google Scholar 

  • Batten D, Dyer KD, Domachowske JB, Rosenberg HF (1997) Molecular cloning of four novel murine ribonuclease genes: unusual expansion within the ribonuclease A gene family. Nucleic Acids Res 25:4235–4239

    Article  CAS  PubMed  Google Scholar 

  • Beil WJ, Weller PF, Tzizik DM, Galli SJ, Dvorak AM (1993) Ultrastructural immunogold localization of tumor necrosis factor-alpha to the matrix compartment of eosinophil secondary granules in patients with idiopathic hypereosinophilic syndrome. J Histochem Cytochem 41:1611–1615

    CAS  PubMed  Google Scholar 

  • Beninati W, Derdak S, Dixon PF, Grider DJ, Strollo DC, Hensley RE, Lucey DR (1993) Pulmonary eosinophils express HLA-DR in chronic eosinophilic pneumonia. J Allergy Clin Immunol 92:442–449

    Article  CAS  PubMed  Google Scholar 

  • Borchers MT, Ansay T, DeSalle R, Daugherty BL, Shen H, Metzger M, Lee NA, Lee JJ (2002) In vitro assessment of chemokine receptor-ligand interactions mediating mouse eosinophil migration. J Leukoc Biol 71:1033–1041

    CAS  PubMed  Google Scholar 

  • Bozza PT, Yu W, Penrose JF, Morgan ES, Dvorak AM, Weller PF (1997) Eosinophil lipid bodies: specific, inducible intracellular sites for enhanced eicosanoid formation. J Exp Med 186:909–920

    Article  CAS  PubMed  Google Scholar 

  • Butterworth AE, Sturrock RF, Houba V, Mahmoud AA, Sher A, Rees PH (1975) Eosinophils as mediators of antibody-dependent damage to schistosomula. Nature 256:727–729

    Article  CAS  PubMed  Google Scholar 

  • Butterworth AE, Wassom DL, Gleich GJ, Loegering DA, David JR (1979) Damage to schistosomula of Schistosoma mansoni induced directly by eosinophil major basic protein. J Immunol 122:221–229

    CAS  PubMed  Google Scholar 

  • Capron M, Truong MJ, Aldebert D, Gruart V, Suemura M, Delespesse G, Tourvieille B, Capron A (1991) Heterogeneous expression of CD23 epitopes by eosinophils from patients. Relationships with IgE-mediated functions. Eur J Immunol 21:2423–2429

    Article  CAS  PubMed  Google Scholar 

  • Carlson MG, Peterson CG, Venge P (1985) Human eosinophil peroxidase: purification and characterization. J Immunol 134:1875–1879

    CAS  PubMed  Google Scholar 

  • Cherry WB, Yoon J, Bartemes KR, Iijima K, Kita H (2008) A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J Allergy Clin Immunol 121:1484–1490

    Article  CAS  PubMed  Google Scholar 

  • Cheung PF, Wong CK, Lam CW (2008) Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F, and IL-23: implication for Th17 lymphocytes-mediated allergic inflammation. J Immunol 180:5625–5635

    CAS  PubMed  Google Scholar 

  • Cheung PF, Wong CK, Ho AW, Hu S, Chen DP, Lam CW (2010) Activation of human eosinophils and epidermal keratinocytes by Th2 cytokine IL-31: implication for the immunopathogenesis of atopic dermatitis. Int Immunol 22:453–467

    Article  CAS  PubMed  Google Scholar 

  • Cline MJ, Hanifin J, Lehrer RI (1968) Phagocytosis by human eosinophils. Blood 32:922–934

    CAS  PubMed  Google Scholar 

  • Cormier SA, Larson KA, Yuan S, Mitchell TL, Lindenberger K, Carrigan P, Lee NA, Lee JJ (2001) Mouse eosinophil-associated ribonucleases: a unique subfamily expressed during hematopoiesis. Mamm Genome 12:352–361

    Article  CAS  PubMed  Google Scholar 

  • Cormier SA, Taranova AG, Bedient C, Nguyen T, Protheroe C, Pero R, Dimina D, Ochkur SI, O’Neill K, Colbert D, Lombari TR, Constant S, McGarry MP, Lee JJ, Lee NA (2006) Pivotal Advance: eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. J Leukoc Biol 79:1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Dahlen B, Shute J, Howarth P (1999) Immunohistochemical localisation of the matrix metalloproteinases MMP-3 and MMP-9 within the airways in asthma. Thorax 54:590–596

    Article  CAS  PubMed  Google Scholar 

  • David JR, Butterworth AE, Vadas MA (1980) Mechanism of the interaction mediating killing of Schistosoma mansoni by human eosinophils. Am J Trop Med Hyg 29:842–848

    CAS  PubMed  Google Scholar 

  • Del Pozo V, De Andres B, Martin E, Cardaba B, Fernandez JC, Gallardo S, Tramon P, Leyva-Cobian F, Palomino P, Lahoz C (1992) Eosinophil as antigen-presenting cell: activation of T cell clones and T cell hybridoma by eosinophils after antigen processing. Eur J Immunol 22:1919–1925

    Article  PubMed  Google Scholar 

  • Dent LA, Munro GH, Piper KP, Sanderson CJ, Finlay DA, Dempster RK, Bignold LP, Harkin DG, Hagan P (1997) Eosinophilic interleukin 5 (IL-5) transgenic mice: eosinophil activity and impaired clearance of Schistosoma mansoni. Parasite Immunol 19:291–300

    Article  CAS  PubMed  Google Scholar 

  • Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111

    Article  CAS  PubMed  Google Scholar 

  • Detoraki A, Granata F, Staibano S, Rossi FW, Marone G, Genovese A (2010) Angiogenesis and lymphangiogenesis in bronchial asthma. Allergy 65:946–958

    Google Scholar 

  • Doherty T, Broide D (2007) Cytokines and growth factors in airway remodeling in asthma. Curr Opin Immunol 19:676–680

    Article  CAS  PubMed  Google Scholar 

  • Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF (1998) Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis 177:1458–1464

    Article  CAS  PubMed  Google Scholar 

  • Domachowske JB, Bonville CA, Dyer KD, Easton AJ, Rosenberg HF (2000a) Pulmonary eosinophilia and production of MIP-1alpha are prominent responses to infection with pneumonia virus of mice. Cell Immunol 200:98–104

    Article  CAS  PubMed  Google Scholar 

  • Domachowske JB, Bonville CA, Gao JL, Murphy PM, Easton AJ, Rosenberg HF (2000b) The chemokine macrophage-inflammatory protein-1 alpha and its receptor CCR1 control pulmonary inflammation and antiviral host defense in paramyxovirus infection. J Immunol 165:2677–2682

    CAS  PubMed  Google Scholar 

  • Driss V, Legrand F, Hermann E, Loiseau S, Guerardel Y, Kremer L, Adam E, Woerly G, Dombrowicz D, Capron M (2009) TLR2-dependent eosinophil interactions with mycobacteria: role of alpha-defensins. Blood 113:3235–3244

    Article  CAS  PubMed  Google Scholar 

  • Dubois GR, Schweizer RC, Versluis C, Bruijnzeel-Koomen CA, Bruijnzeel PL (1998) Human eosinophils constitutively express a functional interleukin-4 receptor: interleukin-4 -induced priming of chemotactic responses and induction of PI-3 kinase activity. Am J Respir Cell Mol Biol 19:691–699

    CAS  PubMed  Google Scholar 

  • Dubucquoi S, Desreumaux P, Janin A, Klein O, Goldman M, Tavernier J, Capron A, Capron M (1994) Interleukin 5 synthesis by eosinophils: association with granules and immunoglobulin-dependent secretion. J Exp Med 179:703–708

    Article  CAS  PubMed  Google Scholar 

  • Duez C, Dakhama A, Tomkinson A, Marquillies P, Balhorn A, Tonnel AB, Bratton DL, Gelfand EW (2004) Migration and accumulation of eosinophils toward regional lymph nodes after airway allergen challenge. J Allergy Clin Immunol 114:820–825

    Article  CAS  PubMed  Google Scholar 

  • Dunzendorfer S, Kaneider NC, Kaser A, Woell E, Frade JM, Mellado M, Martinez-Alonso C, Wiedermann CJ (2001) Functional expression of chemokine receptor 2 by normal human eosinophils. J Allergy Clin Immunol 108:581–587

    Article  CAS  PubMed  Google Scholar 

  • Durack DT, Sumi SM, Klebanoff SJ (1979) Neurotoxicity of human eosinophils. Proc Natl Acad Sci USA 76:1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Durack DT, Ackerman SJ, Loegering DA, Gleich GJ (1981) Purification of human eosinophil-derived neurotoxin. Proc Natl Acad Sci USA 78:5165–5169

    Article  CAS  PubMed  Google Scholar 

  • Dyer KD, Percopo CM, Fischer ER, Gabryszewski SJ, Rosenberg HF (2009) Pneumoviruses infect eosinophils and elicit MyD88-dependent release of chemoattractant cytokines and interleukin-6. Blood 114:2649–2656

    CAS  PubMed  Google Scholar 

  • Egesten A, Alumets J, von Mecklenburg C, Palmegren M, Olsson I (1986) Localization of eosinophil cationic protein, major basic protein, and eosinophil peroxidase in human eosinophils by immunoelectron microscopic technique. J Histochem Cytochem 34:1399–1403

    CAS  PubMed  Google Scholar 

  • Egesten A, Calafat J, Weller PF, Knol EF, Janssen H, Walz TM, Olsson I (1997) Localization of granule proteins in human eosinophil bone marrow progenitors. Int Arch Allergy Immunol 114:130–138

    Article  CAS  PubMed  Google Scholar 

  • Ellyard JI, Simson L, Parish CR (2007) Th2-mediated anti-tumour immunity: friend or foe? Tissue Antigens 70:1–11

    Article  CAS  PubMed  Google Scholar 

  • Elsner J, Dulkys Y, Gupta S, Escher SE, Forssmann WG, Kapp A, Forssmann U (2005) Differential pattern of CCR1 internalization in human eosinophils: prolonged internalization by CCL5 in contrast to CCL3. Allergy 60:1386–1393

    Article  CAS  PubMed  Google Scholar 

  • Erjefalt JS, Andersson M, Greiff L, Korsgren M, Gizycki M, Jeffery PK, Persson CGA (1998) Cytolysis and piecemeal degranulation as distinct modes of activation of airway mucosal eosinophils. J Allergy Clin Immunol 102:286–294

    Google Scholar 

  • Evans CM, Belmonte KE, Costello RW, Jacoby DB, Gleich GJ, Fryer AD (2000) Substance P-induced airway hyperreactivity is mediated by neuronal M(2) receptor dysfunction. Am J Physiol Lung Cell Mol Physiol 279:L477–486

    CAS  PubMed  Google Scholar 

  • Fabre V, Beiting DP, Bliss SK, Gebreselassie NG, Gagliardo LF, Lee NA, Lee JJ, Appleton JA (2009) Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol 182:1577–1583

    CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077

    Article  CAS  PubMed  Google Scholar 

  • Fillon S, Robinson ZD, Colgan SP, Furuta GT (2009) Epithelial function in eosinophilic gastrointestinal diseases. Immunol Allergy Clin North Am 29:171–178

    Article  PubMed  Google Scholar 

  • Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS (2003a) Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med 167:199–204

    Google Scholar 

  • Flood-Page P, Menzies-Gow A, Phipps S, Ying S, Wangoo A, Ludwig M, Barnes N, Robinson D, Kay AB (2003b) Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest 112:1029–1036

  • Fujii M, Tanaka H, Abe S (2005) Interferon-gamma up-regulates expression of cysteinyl leukotriene type 2 receptors on eosinophils in asthmatic patients. Chest 128:3148–3155

    Article  CAS  PubMed  Google Scholar 

  • Fulkerson PC, Fischetti CA, McBride ML, Hassman LM, Hogan SP, Rothenberg ME (2006a) A central regulatory role for eosinophils and the eotaxin/CCR3 axis in chronic experimental allergic airway inflammation. Proc Natl Acad Sci USA 103:16418–16423

    Article  CAS  PubMed  Google Scholar 

  • Fulkerson PC, Fischetti CA, Rothenberg ME (2006b) Eosinophils and CCR3 regulate interleukin-13 transgene-induced pulmonary remodeling. Am J Pathol 169:2117–2126

    Article  CAS  PubMed  Google Scholar 

  • Furbert-Harris P, Parish-Gause D, Laniyan I, Hunter KA, Okomo-Awich J, Vaughn TR, Forrest KC, Howland C, Abdelnaby A, Oredipe OA (2003a) Inhibition of prostate cancer cell growth by activated eosinophils. Prostate 57:165–175

    Article  CAS  PubMed  Google Scholar 

  • Furbert-Harris PM, Laniyan I, Harris D, Dunston GM, Vaughn T, Abdelnaby A, Parish-Gause D, Oredipe OA (2003b) Activated eosinophils infiltrate MCF-7 breast multicellular tumor spheroids. Anticancer Res 23:71–78

    PubMed  Google Scholar 

  • Furuta GT, Nieuwenhuis EE, Karhausen J, Gleich G, Blumberg RS, Lee JJ, Ackerman SJ (2005) Eosinophils alter colonic epithelial barrier function: role for major basic protein. Am J Physiol Gastrointest Liver Physiol 289:G890–897

    Article  CAS  PubMed  Google Scholar 

  • Galioto AM, Hess JA, Nolan TJ, Schad GA, Lee JJ, Abraham D (2006) Role of eosinophils and neutrophils in innate and adaptive protective immunity to larval Strongyloides stercoralis in mice. Infect Immun 74:5730–5738

    Article  CAS  PubMed  Google Scholar 

  • Garvey TL, Dyer KD, Ellis JA, Bonville CA, Foster B, Prussin C, Easton AJ, Domachowske JB, Rosenberg HF (2005) Inflammatory responses to pneumovirus infection in IFN-alpha beta R gene-deleted mice. J Immunol 175:4735–4744

    CAS  PubMed  Google Scholar 

  • Gauthier MC, Racine C, Ferland C, Flamand N, Chakir J, Tremblay GM, Laviolette M (2003) Expression of membrane type-4 matrix metalloproteinase (metalloproteinase-17) by human eosinophils. Int J Biochem Cell Biol 35:1667–1673

    Article  CAS  PubMed  Google Scholar 

  • Gessner A, Mohrs K, Mohrs M (2005) Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. J Immunol 174:1063–1072

    CAS  PubMed  Google Scholar 

  • Giembycz MA, Lindsay MA (1999) Pharmacology of the eosinophil. Pharmacol Rev 51:213–340

    CAS  PubMed  Google Scholar 

  • Giri SN, Hyde DM, Hollinger MA (1993) Effect of antibody to transforming growth factor beta on bleomycin induced accumulation of lung collagen in mice. Thorax 48:959–966

    Article  CAS  PubMed  Google Scholar 

  • Gleich GJ, Adolphson CR (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39:177–253

    Article  CAS  PubMed  Google Scholar 

  • Gleich GJ, Loegering DA, Maldonado JE (1973) Identification of a major basic protein in guinea pig eosinophil granules. J Exp Med 137:1459–1471

    Article  CAS  PubMed  Google Scholar 

  • Gleich GJ, Loegering DA, Bell MP, Checkel JL, Ackerman SJ, McKean DJ (1986) Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci USA 83:3146–3150

    Article  CAS  PubMed  Google Scholar 

  • Gomes I, Mathur SK, Espenshade BM, Mori Y, Varga J, Ackerman SJ (2005) Eosinophil-fibroblast interactions induce fibroblast IL-6 secretion and extracellular matrix gene expression: implications in fibrogenesis. J Allergy Clin Immunol 116:796–804

    Article  CAS  PubMed  Google Scholar 

  • Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, Capron A, Kinet JP, Capron M (1994) High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367:183–186

    Article  CAS  PubMed  Google Scholar 

  • Gouon-Evans V, Pollard JW (2001) Eotaxin is required for eosinophil homing into the stroma of the pubertal and cycling uterus. Endocrinology 142:4515–4521

    Article  CAS  PubMed  Google Scholar 

  • Gouon-Evans V, Rothenberg ME, Pollard JW (2000) Postnatal mammary gland development requires macrophages and eosinophils. Development 127:2269–2282

    CAS  PubMed  Google Scholar 

  • Gouon-Evans V, Lin EY, Pollard JW (2002) Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res 4:155–164

    Article  PubMed  Google Scholar 

  • Greenberger PA, Smith LJ, Hsu CC, Roberts M, Liotta JL (1988) Analysis of bronchoalveolar lavage in allergic bronchopulmonary aspergillosis: divergent responses of antigen-specific antibodies and total IgE. J Allergy Clin Immunol 82:164–170

    Article  CAS  PubMed  Google Scholar 

  • Grewe M, Czech W, Morita A, Werfel T, Klammer M, Kapp A, Ruzicka T, Schopf E, Krutmann J (1998) Human eosinophils produce biologically active IL-12: implications for control of T cell responses. J Immunol 161:415–420

    CAS  PubMed  Google Scholar 

  • Gupta K, Gupta P, Wild R, Ramakrishnan S, Hebbel RP (1999) Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis. Angiogenesis 3:147–158

    Article  CAS  PubMed  Google Scholar 

  • Gurish MF, Humbles A, Tao H, Finkelstein S, Boyce JA, Gerard C, Friend DS, Austen KF (2002) CCR3 is required for tissue eosinophilia and larval cytotoxicity after infection with Trichinella spiralis. J Immunol 168:5730–5736

    CAS  PubMed  Google Scholar 

  • Gurtner GJ, Newberry RD, Schloemann SR, McDonald KG, Stenson WF (2003) Inhibition of indoleamine 2, 3-dioxygenase augments trinitrobenzene sulfonic acid colitis in mice. Gastroenterology 125:1762–1773

    Article  CAS  PubMed  Google Scholar 

  • Hagan P, Wilkins HA, Blumenthal UJ, Hayes RJ, Greenwood BM (1985) Eosinophilia and resistance to Schistosoma haematobium in man. Parasite Immunol 7:625–632

    Article  CAS  PubMed  Google Scholar 

  • Hamann KJ, Gleich GJ, Checkel JL, Loegering DA, McCall JW, Barker RL (1990) In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins. J Immunol 144:3166–3173

    CAS  PubMed  Google Scholar 

  • Han Z, Junxu ZN (2003) Expression of matrix metalloproteinases MMP-9 within the airways in asthma. Respir Med 97:563–567

    Article  CAS  PubMed  Google Scholar 

  • Handzel ZT, Busse WW, Sedgwick JB, Vrtis R, Lee WM, Kelly EA, Gern JE (1998) Eosinophils bind rhinovirus and activate virus-specific T cells. J Immunol 160:1279–1284

    CAS  PubMed  Google Scholar 

  • Hansel TT, Braunstein JB, Walker C, Blaser K, Bruijnzeel PL, Virchow JC Jr, Virchow C Sr (1991) Sputum eosinophils from asthmatics express ICAM-1 and HLA-DR. Clin Exp Immunol 86:271–277

    Article  CAS  PubMed  Google Scholar 

  • Haque A, Ouaissi A, Joseph M, Capron M, Capron A (1981) IgE antibody in eosinophil- and macrophage-mediated in vitro killing of Dipetalonema viteae microfilariae. J Immunol 127:716–725

    CAS  PubMed  Google Scholar 

  • Hatano Y, Taniuchi S, Masuda M, Tsuji S, Ito T, Hasui M, Kobayashi Y, Kaneko K (2009) Phagocytosis of heat-killed Staphylococcus aureus by eosinophils: comparison with neutrophils. APMIS 117:115–123

    Article  PubMed  Google Scholar 

  • Hauber HP, Bergeron C, Hamid Q (2004) IL-9 in allergic inflammation. Int Arch Allergy Immunol 134:79–87

    Article  CAS  PubMed  Google Scholar 

  • Herbert DR, Lee JJ, Lee NA, Nolan TJ, Schad GA, Abraham D (2000) Role of IL-5 in innate and adaptive immunity to larval Strongyloides stercoralis in mice. J Immunol 165:4544–4551

    CAS  PubMed  Google Scholar 

  • Hibbs MS, Mainardi CL, Kang AH (1982) Type-specific collagen degradation by eosinophils. Biochem J 207:621–624

    CAS  PubMed  Google Scholar 

  • Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, Kay AB, Rothenberg ME (2008) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38:709–750

    Article  CAS  PubMed  Google Scholar 

  • Hokibara S, Takamoto M, Tominaga A, Takatsu K, Sugane K (1997) Marked eosinophilia in interleukin-5 transgenic mice fails to prevent Trichinella spiralis infection. J Parasitol 83:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi T, Weller PF (1997) Expression of vascular endothelial growth factor by human eosinophils: upregulation by granulocyte macrophage colony-stimulating factor and interleukin-5. Am J Respir Cell Mol Biol 17:70–77

    CAS  PubMed  Google Scholar 

  • Horton MA, Larson KA, Lee JJ, Lee NA (1996) Cloning of the murine eosinophil peroxidase gene (mEPO): characterization of a conserved subgroup of mammalian hematopoietic peroxidases. J Leukoc Biol 60:285–294

    CAS  PubMed  Google Scholar 

  • Hoshino M, Nakamura Y, Hamid QA (2001a) Gene expression of vascular endothelial growth factor and its receptors and angiogenesis in bronchial asthma. J Allergy Clin Immunol 107:1034–1038

    Article  CAS  PubMed  Google Scholar 

  • Hoshino M, Takahashi M, Aoike N (2001b) Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. J Allergy Clin Immunol 107:295–301

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Wong CK, Lam CW (2010) Activation of eosinophils by IL-12 family cytokine IL-27: Implications of the pleiotropic roles of IL-27 in allergic responses. Immunobiology

  • Huland E, Huland H (1992) Tumor-associated eosinophilia in interleukin-2-treated patients: evidence of toxic eosinophil degranulation on bladder cancer cells. J Cancer Res Clin Oncol 118:463–467

    Article  CAS  PubMed  Google Scholar 

  • Humbles AA, Lu B, Friend DS, Okinaga S, Lora J, Al-Garawi A, Martin TR, Gerard NP, Gerard C (2002) The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc Natl Acad Sci USA 99:1479–1484

    Article  CAS  PubMed  Google Scholar 

  • Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, Ghiran S, Gerard NP, Yu C, Orkin SH, Gerard C (2004) A critical role for eosinophils in allergic airways remodeling. Science 305:1726–1729

    Google Scholar 

  • Inoue Y, Matsuwaki Y, Shin SH, Ponikau JU, Kita H (2005) Nonpathogenic, environmental fungi induce activation and degranulation of human eosinophils. J Immunol 175:5439–5447

    CAS  PubMed  Google Scholar 

  • Iozzo RV, MacDonald GH, Wight TN (1982) Immunoelectron microscopic localization of catalase in human eosinophilic leukocytes. J Histochem Cytochem 30:697–701

    CAS  PubMed  Google Scholar 

  • Jacobsen EA, Ochkur SI, Pero RS, Taranova AG, Protheroe CA, Colbert DC, Lee NA, Lee JJ (2008) Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells. J Exp Med 205:699–710

    Google Scholar 

  • Jacoby DB, Gleich GJ, Fryer AD (1993) Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor. J Clin Invest 91:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Jordan MB, Mills DM, Kappler J, Marrack P, Cambier JC (2004) Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 304:1808–1810

    Article  CAS  PubMed  Google Scholar 

  • Jung YJ, Woo SY, Jang MH, Miyasaka M, Ryu KH, Park HK, Seoh JY (2008) Human eosinophils show chemotaxis to lymphoid chemokines and exhibit antigen-presenting-cell-like properties upon stimulation with IFN-gamma, IL-3 and GM-CSF. Int Arch Allergy Immunol 146:227–234

    Article  CAS  PubMed  Google Scholar 

  • Kaneko M, Swanson MC, Gleich GJ, Kita H (1995) Allergen-specific IgG1 and IgG3 through Fc gamma RII induce eosinophil degranulation. J Clin Invest 95:2813–2821

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Kephart GM, Talley NJ, Wagner JM, Sarr MG, Bonno M, McGovern TW, Gleich GJ (1998) Eosinophil infiltration and degranulation in normal human tissue. Anat Rec 252:418–425

    Article  CAS  PubMed  Google Scholar 

  • Kay AB, Shin HS, Austen KF (1973) Selective attraction of eosinophils and synergism between eosinophil chemotactic factor of anaphylaxis (ECF-A) and a fragment cleaved from the fifth component of complement (C5a). Immunology 24:969–976

    CAS  PubMed  Google Scholar 

  • Kay AB, Phipps S, Robinson DS (2004) A role for eosinophils in airway remodeling in asthma. Trends in Immunology 26:477–482

    Google Scholar 

  • Kazura JW, Grove DI (1978) Stage-specific antibody-dependent eosinophil-mediated destruction of Trichinella spiralis. Nature 274:588–589

    Article  CAS  PubMed  Google Scholar 

  • Khalife J, Dunne DW, Richardson BA, Mazza G, Thorne KJ, Capron A, Butterworth AE (1989) Functional role of human IgG subclasses in eosinophil-mediated killing of schistosomula of Schistosoma mansoni. J Immunol 142:4422–4427

    CAS  PubMed  Google Scholar 

  • Kierszenbaum F, Ackerman SJ, Gleich GJ (1981) Destruction of bloodstream forms of Trypanosoma cruzi by eosinophil granule major basic protein. Am J Trop Med Hyg 30:775–779

    CAS  PubMed  Google Scholar 

  • Kleine TJ, Gleich GJ, Lewis SA (1999) Eosinophil peroxidase increases membrane permeability in mammalian urinary bladder epithelium. Am J Physiol 276:C638–647

    CAS  PubMed  Google Scholar 

  • Klion AD, Nutman TB (2004) The role of eosinophils in host defense against helminth parasites. J Allergy Clin Immunol 113:30–37

    Article  CAS  PubMed  Google Scholar 

  • Ko FW, Diba C, Roth M, McKay K, Johnson PR, Salome C, King GG (2005) A comparison of airway and serum matrix metalloproteinase-9 activity among normal subjects, asthmatic patients, and patients with asthmatic mucus hypersecretion. Chest 127:1919–1927

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Kouzaki H, Kita H (2010) Human eosinophils recognize endogenous danger signal crystalline uric acid and produce proinflammatory cytokines mediated by autocrine ATP. J Immunol 184:6350–6358

    Article  CAS  PubMed  Google Scholar 

  • Korenaga M, Hitoshi Y, Yamaguchi N, Sato Y, Takatsu K, Tada I (1991) The role of interleukin-5 in protective immunity to Strongyloides venezuelensis infection in mice. Immunology 72:502–507

    CAS  PubMed  Google Scholar 

  • Kruger-Krasagakes S, Li W, Richter G, Diamantstein T, Blankenstein T (1993) Eosinophils infiltrating interleukin-5 gene-transfected tumors do not suppress tumor growth. Eur J Immunol 23:992–995

    Article  CAS  PubMed  Google Scholar 

  • Kubo H, Loegering DA, Adolphson CR, Gleich GJ (1999) Cytotoxic properties of eosinophil granule major basic protein for tumor cells. Int Arch Allergy Immunol 118:426–428

    Article  CAS  PubMed  Google Scholar 

  • Lacy P, Moqbel R (2000) Eosinophil cytokines. Chem Immunol 76:134–155

    Article  CAS  PubMed  Google Scholar 

  • Lacy P, Levi-Schaffer F, Mahmudi-Azer S, Bablitz B, Hagen SC, Velazquez J, Kay AB, Moqbel R (1998) Intracellular localization of interleukin-6 in eosinophils from atopic asthmatics and effects of interferon gamma. Blood 91:2508–2516

    CAS  PubMed  Google Scholar 

  • Lamkhioued B, Aldebert D, Gounni AS, Delaporte E, Goldman M, Capron A, Capron M (1995) Synthesis of cytokines by eosinophils and their regulation. Int Arch Allergy Immunol 107:122–123

    Article  CAS  PubMed  Google Scholar 

  • Larson KA, Horton MA, Madden BJ, Gleich GJ, Lee NA, Lee JJ (1995) The identification and cloning of a murine major basic protein gene expressed in eosinophils. J Immunol 155:3002–3012

    CAS  PubMed  Google Scholar 

  • Larson KA, Olson EV, Madden BJ, Gleich GJ, Lee NA, Lee JJ (1996) Two highly homologous ribonuclease genes expressed in mouse eosinophils identify a larger subgroup of the mammalian ribonuclease superfamily. Proc Natl Acad Sci USA 93:12370–12375

    Article  CAS  PubMed  Google Scholar 

  • Le AV, Cho JY, Miller M, McElwain S, Golgotiu K, Broide DH (2007) Inhibition of allergen-induced airway remodeling in Smad 3-deficient mice. J Immunol 178:7310–7316

    CAS  PubMed  Google Scholar 

  • Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Connor BJ, Walls CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R, Hansel TT, Holgate ST, Sterk PJ, Barnes PJ (2000) Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356:2144–2148

    Google Scholar 

  • Lee JJ, Lee NA (2005) Eosinophil degranulation: an evolutionary vestige or a universally destructive effector function? Clin Exp Allergy 35:986–994

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Yu E, Good RA, Ikehara S (1995) Presence of eosinophilic precursors in the human thymus: evidence for intra-thymic differentiation of cells in eosinophilic lineage. Pathol Int 45:655–662

    Article  CAS  PubMed  Google Scholar 

  • Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP, O’Neill KR, Protheroe C, Pero R, Nguyen T, Cormier SA, Lenkiewicz E, Colbert D, Rinaldi L, Ackerman SJ, Irvin CG, Lee NA (2004) Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305:1773–1776

    Article  CAS  PubMed  Google Scholar 

  • Legrand F, Driss V, Woerly G, Loiseau S, Hermann E, Fournie JJ, Heliot L, Mattot V, Soncin F, Gougeon ML, Dombrowicz D, Capron M (2009) A functional gammadeltaTCR/CD3 complex distinct from gammadeltaT cells is expressed by human eosinophils. PLoS ONE 4:e5926

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ (1989) Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 142:4428–4434

    CAS  PubMed  Google Scholar 

  • Levi-Schaffer F, Lacy P, Severs NJ, Newman TM, North J, Gomperts B, Kay AB, Moqbel R (1995) Association of granulocyte-macrophage colony-stimulating factor with the crystalloid granules of human eosinophils. Blood 85:2579–2586

    CAS  PubMed  Google Scholar 

  • Levi-Schaffer F, Barkans J, Newman TM, Ying S, Wakelin M, Hohenstein R, Barak V, Lacy P, Kay AB, Moqbel R (1996) Identification of interleukin-2 in human peripheral blood eosinophils. Immunology 87:155–161

    CAS  PubMed  Google Scholar 

  • Levi-Schaffer F, Temkin V, Malamud V, Feld S, Zilberman Y (1998) Mast cells enhance eosinophil survival in vitro: role of TNF-alpha and granulocyte-macrophage colony-stimulating factor. J Immunol 160:5554–5562

    CAS  PubMed  Google Scholar 

  • Li HL, Glick AD (1987) Ultrastructural localization of 2-naphthylthiol acetate nonspecific esterase in human blood cells and leukemic cells. Exp Mol Pathol 46:321–330

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhao Y, Liu J, Huang Y, Liu Z, Xue C (2010) A promising alternative anti-HBV agent: the targeted ribonuclease. Int J Mol Med 26:51–56

    CAS  PubMed  Google Scholar 

  • Linch SN, Kelly AM, Danielson ET, Pero R, Lee JJ, Gold JA (2009) Mouse eosinophils possess potent antibacterial properties in vivo. Infect Immun 77:4976–4982

    Article  CAS  PubMed  Google Scholar 

  • Liu LY, Jarjour NN, Busse WW, Kelly EA (2003) Chemokine receptor expression on human eosinophils from peripheral blood and bronchoalveolar lavage fluid after segmental antigen challenge. J Allergy Clin Immunol 112:556–562

    Article  PubMed  Google Scholar 

  • Logan MR, Lacy P, Odemuyiwa SO, Steward M, Davoine F, Kita H, Moqbel R (2006) A critical role for vesicle-associated membrane protein-7 in exocytosis from human eosinophils and neutrophils. Allergy 61:777–784

    Article  CAS  PubMed  Google Scholar 

  • Lopez AF, Begley CG, Williamson DJ, Warren DJ, Vadas MA, Sanderson CJ (1986) Murine eosinophil differentiation factor. An eosinophil-specific colony-stimulating factor with activity for human cells. J Exp Med 163:1085–1099

    Article  CAS  PubMed  Google Scholar 

  • Lopez AF, Sanderson CJ, Gamble JR, Campbell HD, Young IG, Vadas MA (1988) Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med 167:219–224

    Article  CAS  PubMed  Google Scholar 

  • Loss GE Jr, Sant AJ (1993) Invariant chain retains MHC class II molecules in the endocytic pathway. J Immunol 150:3187–3197

    CAS  PubMed  Google Scholar 

  • Lotfi R, Herzog GI, DeMarco RA, Beer-Stolz D, Lee JJ, Rubartelli A, Schrezenmeier H, Lotze MT (2009) Eosinophils oxidize damage-associated molecular pattern molecules derived from stressed cells. J Immunol 183:5023–5031

    Article  CAS  PubMed  Google Scholar 

  • Lotze MT, Chang AE, Seipp CA, Simpson C, Vetto JT, Rosenberg SA (1986) High-dose recombinant interleukin 2 in the treatment of patients with disseminated cancer. Responses, treatment-related morbidity, and histologic findings. Jama 256:3117–3124

    Article  CAS  PubMed  Google Scholar 

  • Lucey DR, Nicholson-Weller A, Weller PF (1989) Mature human eosinophils have the capacity to express HLA-DR. Proc Natl Acad Sci USA 86:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Macias MP, Welch KC, Denzler KL, Larson KA, Lee NA, Lee JJ (2000) Identification of a new murine eosinophil major basic protein (mMBP) gene: cloning and characterization of mMBP-2. J Leukoc Biol 67:567–576

    CAS  PubMed  Google Scholar 

  • MacKenzie JR, Mattes J, Dent LA, Foster PS (2001) Eosinophils promote allergic disease of the lung by regulating CD4(+) Th2 lymphocyte function. J Immunol 167:3146–3155

    CAS  PubMed  Google Scholar 

  • Mansson A, Cardell LO (2009) Role of atopic status in Toll-like receptor (TLR)7- and TLR9-mediated activation of human eosinophils. J Leukoc Biol 85:719–727

    Article  PubMed  CAS  Google Scholar 

  • Matsuba-Kitamura S, Yoshimoto T, Yasuda K, Futatsugi-Yumikura S, Taki Y, Muto T, Ikeda T, Mimura O, Nakanishi K (2010) Contribution of IL-33 to induction and augmentation of experimental allergic conjunctivitis. Int Immunol 22:479–489

    Article  CAS  PubMed  Google Scholar 

  • Matsuwaki Y, Wada K, White TA, Benson LM, Charlesworth MC, Checkel JL, Inoue Y, Hotta K, Ponikau JU, Lawrence CB, Kita H (2009) Recognition of fungal protease activities induces cellular activation and eosinophil-derived neurotoxin release in human eosinophils. J Immunol 183:6708–6716

    Article  CAS  PubMed  Google Scholar 

  • Mattes J, Yang M, Mahalingam S, Kuehr J, Webb DC, Simson L, Hogan SP, Koskinen A, McKenzie AN, Dent LA, Rothenberg ME, Matthaei KI, Young IG, Foster PS (2002) Intrinsic defect in T cell production of interleukine (IL)-13 in the absence of both IL-5 and eotaxin precludes the development of eosinophilia and airways hyperreactivity in experimental asthma. J Exp Med 195:1433–1444

    Google Scholar 

  • Mattes J, Hulett M, Xie W, Hogan S, Rothenberg ME, Foster P, Parish C (2003) Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J Exp Med 197:387–393

    Article  CAS  PubMed  Google Scholar 

  • Mattey DL, Dawes PT, Nixon NB, Slater H (1997) Transforming growth factor beta 1 and interleukin 4 induced alpha smooth muscle actin expression and myofibroblast-like differentiation in human synovial fibroblasts in vitro: modulation by basic fibroblast growth factor. Ann Rheum Dis 56:426–431

    Article  CAS  PubMed  Google Scholar 

  • Mawhorter SD, Pearlman E, Kazura JW, Boom WH (1993) Class II major histocompatibility complex molecule expression on murine eosinophils activated in vivo by Brugia malayi. Infect Immun 61:5410–5412

    CAS  PubMed  Google Scholar 

  • McLaren DJ, McKean JR, Olsson I, Venges P, Kay AB (1981) Morphological studies on the killing of schistosomula of Schistosoma mansoni by human eosinophil and neutrophil cationic proteins in vitro. Parasite Immunol 3:359–373

    Article  CAS  PubMed  Google Scholar 

  • Melo RC, Spencer LA, Perez SA, Ghiran I, Dvorak AM, Weller PF (2005) Human eosinophils secrete preformed, granule-stored interleukin-4 through distinct vesicular compartments. Traffic 6:1047–1057

    Article  CAS  PubMed  Google Scholar 

  • Melo RC, Spencer LA, Dvorak AM, Weller PF (2008) Mechanisms of eosinophil secretion: large vesiculotubular carriers mediate transport and release of granule-derived cytokines and other proteins. J Leukoc Biol 83:229–236

    Article  CAS  PubMed  Google Scholar 

  • Miike S, McWilliam AS, Kita H (2001) Trypsin induces activation and inflammatory mediator release from human eosinophils through protease-activated receptor-2. J Immunol 167:6615–6622

    CAS  PubMed  Google Scholar 

  • Minshall E, Chakir J, Laviolette M, Molet S, Zhu Z, Olivenstein R, Elias JA, Hamid Q (2000) IL-11 expression is increased in severe asthma: association with epithelial cells and eosinophils. J Allergy Clin Immunol 105:232–238

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Hogan SP, Brandt EB, Rothenberg ME (2000) Peyer’s patch eosinophils: identification, characterization, and regulation by mucosal allergen exposure, interleukin-5, and eotaxin. Blood 96:1538–1544

    CAS  PubMed  Google Scholar 

  • Modesti A, Masuelli L, Modica A, D'Orazi G, Scarpa S, Bosco MC, Forni G (1993) Ultrastructural evidence of the mechanisms responsible for interleukin-4-activated rejection of a spontaneous murine adenocarcinoma. Int J Cancer 53:988–993

    Article  CAS  PubMed  Google Scholar 

  • Moller GM, de Jong TA, Overbeek SE, van der Kwast TH, Postma DS, Hoogsteden HC (1996) Ultrastructural immunogold localization of interleukin 5 to the crystalloid core compartment of eosinophil secondary granules in patients with atopic asthma. J Histochem Cytochem 44:67–69

    CAS  PubMed  Google Scholar 

  • Monteiro RC, Hostoffer RW, Cooper MD, Bonner JR, Gartland GL, Kubagawa H (1993) Definition of immunoglobulin A receptors on eosinophils and their enhanced expression in allergic individuals. J Clin Invest 92:1681–1685

    Article  CAS  PubMed  Google Scholar 

  • Moqbel R, Coughlin JJ (2006) Differential secretion of cytokines. Sci STKE 2006:pe26

    Article  PubMed  Google Scholar 

  • Moqbel R, Lacy P (1999) Exocytotic events in eosinophils and mast cells. Clin Exp Allergy 29:1017–1022

    Google Scholar 

  • Moqbel R, Ying S, Barkans J, Newman TM, Kimmitt P, Wakelin M, Taborda-Barata L, Meng Q, Corrigan CJ, Durham SR, Kay AB (1995) Identification of messenger RNA for IL-4 in human eosinophils with granule localization and release of the translated product. J Immunol 155:4939–4947

    CAS  PubMed  Google Scholar 

  • Moroni M, Porta C, Gritti D, Di Amici M, Giacobbe O, Bobbio-Pallavicini E, Notario A (1997) Cationic protein-rich supernatants of cultured eosinophils from IL-2-treated patients have no cytotoxic activity on human renal cell carcinoma and melanoma cells: a preliminary report. Ann NY Acad Sci 832:295–303

    Article  CAS  PubMed  Google Scholar 

  • Moroni M, Porta C, De Amici M, Quaglini S, Cattabiani MA, Buzio C (2000) Eosinophils and C4 predict clinical failure of combination immunotherapy with very low dose subcutaneous interleukin-2 and interferon in renal cell carcinoma patients. Haematologica 85:298–303

    CAS  PubMed  Google Scholar 

  • Motojima S, Frigas E, Loegering DA, Gleich GJ (1989) Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis 139:801–805

    CAS  PubMed  Google Scholar 

  • Nagase H, Miyamasu M, Yamaguchi M, Kawasaki H, Ohta K, Yamamoto K, Morita Y, Hirai K (2000) Glucocorticoids preferentially upregulate functional CXCR4 expression in eosinophils. J Allergy Clin Immunol 106:1132–1139

    Article  CAS  PubMed  Google Scholar 

  • Nagase H, Kudo K, Izumi S, Ohta K, Kobayashi N, Yamaguchi M, Matsushima K, Morita Y, Yamamoto K, Hirai K (2001) Chemokine receptor expression profile of eosinophils at inflamed tissue sites: decreased CCR3 and increased CXCR4 expression by lung eosinophils. J Allergy Clin Immunol 108:563–569

    Article  CAS  PubMed  Google Scholar 

  • Nagase H, Okugawa S, Ota Y, Yamaguchi M, Tomizawa H, Matsushima K, Ohta K, Yamamoto K, Hirai K (2003) Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J Immunol 171:3977–3982

    CAS  PubMed  Google Scholar 

  • Nakajima T, Yamada H, Iikura M, Miyamasu M, Izumi S, Shida H, Ohta K, Imai T, Yoshie O, Mochizuki M, Schroder JM, Morita Y, Yamamoto K, Hirai K (1998) Intracellular localization and release of eotaxin from normal eosinophils. FEBS Lett 434:226–230

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Hirakata M, Nittoh T, Ishihara K, Ohuchi K (2001) Expression and purification of recombinant rat eosinophil-associated ribonucleases, homologues of human eosinophil cationic protein and eosinophil-derived neurotoxin, and their characterization. Int Arch Allergy Immunol 125:241–249

    Article  CAS  PubMed  Google Scholar 

  • Neves JS, Weller PF (2009) Functional extracellular eosinophil granules: novel implications in eosinophil immunobiology. Curr Opin Immunol 6:694–699

    Google Scholar 

  • Neves JS, Perez SA, Spencer LA, Melo RC, Reynolds L, Ghiran I, Mahmudi-Azer S, Odemuyiwa SO, Dvorak AM, Moqbel R, Weller PF (2008) Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc Natl Acad Sci USA 105:18478–18483

    Google Scholar 

  • Nissim Ben Efraim AH, Eliashar R, Levi-Schaffer F (2010) Hypoxia modulates human eosinophil function. Clin Mol Allergy 8:10

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Article  PubMed  Google Scholar 

  • Odemuyiwa SO, Ghahary A, Li Y, Puttagunta L, Lee JE, Musat-Marcu S, Moqbel R (2004) Cutting edge: human eosinophils regulate T cell subset selection through indoleamine 2, 3-dioxygenase. J Immunol 173:5909–5913

    CAS  PubMed  Google Scholar 

  • Ohno I, Ohtani H, Nitta Y, Suzuki J, Hoshi H, Honma M, Isoyama S, Tanno Y, Tamura G, Yamauchi K, Nagura H, Shirato K (1997) Eosinophils as a source of matrix metalloproteinase-9 in asthmatic airway inflammation. Am J Respir Cell Mol Biol 16:212–219

    CAS  PubMed  Google Scholar 

  • Oliveira SH, Lira S, Martinez AC, Wiekowski M, Sullivan L, Lukacs NW (2002) Increased responsiveness of murine eosinophils to MIP-1beta (CCL4) and TCA-3 (CCL1) is mediated by their specific receptors, CCR5 and CCR8. J Leukoc Biol 71:1019–1025

    CAS  PubMed  Google Scholar 

  • Olsen RL, Little C (1983) Purification and some properties of myeloperoxidase and eosinophil peroxidase from human blood. Biochem J 209:781–787

    CAS  PubMed  Google Scholar 

  • Olsson I, Venge P (1974) Cationic proteins of human granulocytes. II. Separation of the cationic proteins of the granules of leukemic myeloid cells. Blood 44:235–246

    CAS  PubMed  Google Scholar 

  • Padigel UM, Lee JJ, Nolan TJ, Schad GA, Abraham D (2006) Eosinophils can function as antigen-presenting cells to induce primary and secondary immune responses to Strongyloides stercoralis. Infect Immun 74:3232–3238

    Article  CAS  PubMed  Google Scholar 

  • Padigel UM, Hess JA, Lee JJ, Lok JB, Nolan TJ, Schad GA, Abraham D (2007) Eosinophils act as antigen presenting cells to induce immunity to Strongyloides stercoralis in mice. J Infect Dis 196:1844–1851

    Article  CAS  PubMed  Google Scholar 

  • Pericle F, Giovarelli M, Colombo MP, Ferrari G, Musiani P, Modesti A, Cavallo F, Di Pierro F, Novelli F, Forni G (1994) An efficient Th2-type memory follows CD8+ lymphocyte-driven and eosinophil-mediated rejection of a spontaneous mouse mammary adenocarcinoma engineered to release IL-4. J Immunol 153:5659–5673

    CAS  PubMed  Google Scholar 

  • Persson T, Andersson P, Bodelsson M, Laurell M, Malm J, Egesten A (2001) Bactericidal activity of human eosinophilic granulocytes against Escherichia coli. Infect Immun 69:3591–3596

    Article  CAS  PubMed  Google Scholar 

  • Phillips RM, Stubbs VE, Henson MR, Williams TJ, Pease JE, Sabroe I (2003) Variations in eosinophil chemokine responses: an investigation of CCR1 and CCR3 function, expression in atopy, and identification of a functional CCR1 promoter. J Immunol 170:6190–6201

    CAS  PubMed  Google Scholar 

  • Phipps S, Lam CE, Mahalingam S, Newhouse M, Ramirez R, Rosenberg HF, Foster PS, Matthaei KI (2007) Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood 110:1578–1586

    Article  CAS  PubMed  Google Scholar 

  • Plotz SG, Traidl-Hoffmann C, Feussner I, Kasche A, Feser A, Ring J, Jakob T, Behrendt H (2004) Chemotaxis and activation of human peripheral blood eosinophils induced by pollen-associated lipid mediators. J Allergy Clin Immunol 113:1152–1160

    Article  CAS  PubMed  Google Scholar 

  • Ponath PD, Qin S, Post TW, Wang J, Wu L, Gerard NP, Newman W, Gerard C, Mackay CR (1996) Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J Exp Med 183:2437–2448

    Article  CAS  PubMed  Google Scholar 

  • Popken-Harris P, Checkel J, Loegering D, Madden B, Springett M, Kephart G, Gleich GJ (1998) Regulation and processing of a precursor form of eosinophil granule major basic protein (ProMBP) in differentiating eosinophils. Blood 92:623–631

    CAS  PubMed  Google Scholar 

  • Porta C, Moroni M, De Amici M (1998) Eosinophils and serum eosinophilic cationic proteins in interleukin-2-based immunotherapy for cancer. Br J Haematol 100:607–609

    Article  CAS  PubMed  Google Scholar 

  • Puxeddu I, Alian A, Piliponsky AM, Ribatti D, Panet A, Levi-Schaffer F (2005a) Human peripheral blood eosinophils induce angiogenesis. Int J Biochem Cell Biol 37:628–636

    Article  CAS  PubMed  Google Scholar 

  • Puxeddu I, Ribatti D, Crivellato E, Levi-Schaffer F (2005b) Mast cells and eosinophils: a novel link between inflammation and angiogenesis in allergic diseases. J Allergy Clin Immunol 116:531–536

    Article  CAS  PubMed  Google Scholar 

  • Radke A, Reynolds LE, Melo, RCN, Dvorak, AM, Weller, PF, Spencer LA (2009) Mature human eosinophils express functional Notch ligands mediating eosinophil autocrine regulation. Blood 113:3092–3101

    Article  CAS  PubMed  Google Scholar 

  • Rajakulasingam K, Till S, Ying S, Humbert M, Barkans J, Sullivan M, Meng Q, Corrigan CJ, Bungre J, Grant JA, Kay AB, Durham SR (1998) Increased expression of high affinity IgE (FcepsilonRI) receptor-alpha chain mRNA and protein-bearing eosinophils in human allergen-induced atopic asthma. Am J Respir Crit Care Med 158:233–240

    CAS  PubMed  Google Scholar 

  • Ramalho-Pinto FJ, McLaren DJ, Smithers SR (1978) Complement-mediated killing of schistosomula of Schistosoma mansoni by rat eosinophils in vitro. J Exp Med 147:147–156

    Article  CAS  PubMed  Google Scholar 

  • Ramalingam T, Ganley-Leal L, Porte P, Rajan TV (2003) Impaired clearance of primary but not secondary Brugia infections in IL-5 deficient mice. Exp Parasitol 105:131–139

    Article  CAS  PubMed  Google Scholar 

  • Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH et al (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171

    Article  CAS  PubMed  Google Scholar 

  • Robertson SA, Mau VJ, Young IG, Matthaei KI (2000) Uterine eosinophils and reproductive performance in interleukin 5-deficient mice. J Reprod Fertil 120:423–432

    Article  CAS  PubMed  Google Scholar 

  • Rose CE Jr., Lannigan JA, Kim P, Lee JJ, Fu SM, Sung SS (2010) Murine lung eosinophil activation and chemokine production in allergic airway inflammation. Cell Mol Immunol (in press)

  • Rosenberg HF, Domachowske JB (2001) Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol 70:691–698

    CAS  PubMed  Google Scholar 

  • Rothenberg ME, MacLean JA, Pearlman E, Luster AD, Leder P (1997) Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J Exp Med 185:785–790

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg ME, Owen WF Jr, Silberstein DS, Woods J, Soberman RJ, Austen KF, Stevens RL (1988) Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin 3. J Clin Invest 81:1986–1992

    Article  CAS  PubMed  Google Scholar 

  • Rotman HL, Yutanawiboonchai W, Brigandi RA, Leon O, Gleich GJ, Nolan TJ, Schad GA, Abraham D (1996) Strongyloides stercoralis: eosinophil-dependent immune-mediated killing of third stage larvae in BALB/cByJ mice. Exp Parasitol 82:267–278

    Article  CAS  PubMed  Google Scholar 

  • Sabin EA, Pearce EJ (1995) Early IL-4 production by non-CD4+ cells at the site of antigen deposition predicts the development of a T helper 2 cell response to Schistosoma mansoni eggs. J Immunol 155:4844–4853

    CAS  PubMed  Google Scholar 

  • Sabin EA, Kopf MA, Pearce EJ (1996) Schistosoma mansoni egg-induced early IL-4 production is dependent upon IL-5 and eosinophils. J Exp Med 184:1871–1878

    Article  CAS  PubMed  Google Scholar 

  • Samoszuk M (1997) Eosinophils and human cancer. Histol Histopathol 12:807–812

    CAS  PubMed  Google Scholar 

  • Sasaki O, Sugaya H, Ishida K, Yoshimura K (1993) Ablation of eosinophils with anti-IL-5 antibody enhances the survival of intracranial worms of Angiostrongylus cantonensis in the mouse. Parasite Immunol 15:349–354

    Article  CAS  PubMed  Google Scholar 

  • Sedgwick JB, Calhoun WJ, Vrtis RF, Bates ME, McAllister PK, Busse WW (1992) Comparison of airway and blood eosinophil function after in vivo antigen challenge. J Immunol 149:3710–3718

    CAS  PubMed  Google Scholar 

  • Seminario MC, Saini SS, MacGlashan DW Jr, Bochner BS (1999) Intracellular expression and release of Fc epsilon RI alpha by human eosinophils. J Immunol 162:6893–6900

    CAS  PubMed  Google Scholar 

  • Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    Article  CAS  PubMed  Google Scholar 

  • Shakoory B, Fitzgerald SM, Lee SA, Chi DS, Krishnaswamy G (2004) The role of human mast cell-derived cytokines in eosinophil biology. J Interferon Cytokine Res 24:271–281

    Article  CAS  PubMed  Google Scholar 

  • Sher A, Coffman RL, Hieny S, Scott P, Cheever AW (1990) Interleukin 5 is required for the blood and tissue eosinophilia but not granuloma formation induced by infection with Schistosoma mansoni. Proc Natl Acad Sci USA 87:61–65

    Article  CAS  PubMed  Google Scholar 

  • Shi HZ, Humbles A, Gerard C, Jin Z, Weller PF (2000) Lymph node trafficking and antigen presentation by endobronchial eosinophils. J Clin Invest 105:945–953

    Article  CAS  PubMed  Google Scholar 

  • Shi HZ, Xiao CQ, Li CQ, Mo XY, Yang QL, Leng J, Chen YQ (2004) Endobronchial eosinophils preferentially stimulate T helper cell type 2 responses. Allergy 59:428–435

    Article  CAS  PubMed  Google Scholar 

  • Shinkai K, Mohrs M, Locksley RM (2002) Helper T cells regulate type-2 innate immunity in vivo. Nature 420:825–829

    Article  CAS  PubMed  Google Scholar 

  • Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J (1997) Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest 100:768–776

    Article  CAS  PubMed  Google Scholar 

  • Simons JE, Rothenberg ME, Lawrence RA (2005) Eotaxin-1-regulated eosinophils have a critical role in innate immunity against experimental Brugia malayi infection. Eur J Immunol 35:189–197

    Article  CAS  PubMed  Google Scholar 

  • Simpson JL, Scott RJ, Boyle MJ, Gibson PG (2005) Differential proteolytic enzyme activity in eosinophilic and neutrophilic asthma. Am J Respir Crit Care Med 172:559–565

    Article  PubMed  Google Scholar 

  • Simson L, Ellyard JI, Dent LA, Matthaei KI, Rothenberg ME, Foster PS, Smyth MJ, Parish CR (2007) Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. J Immunol 178:4222–4229

    CAS  PubMed  Google Scholar 

  • Singhania NA, Dyer KD, Zhang J, Deming MS, Bonville CA, Domachowske JB, Rosenberg HF (1999) Rapid evolution of the ribonuclease A superfamily: adaptive expansion of independent gene clusters in rats and mice. J Mol Evol 49:721–728

    Article  CAS  PubMed  Google Scholar 

  • Specht S, Saeftel M, Arndt M, Endl E, Dubben B, Lee NA, Lee JJ, Hoerauf A (2006) Lack of eosinophil peroxidase or major basic protein impairs defense against murine filarial infection. Infect Immun 74:5236–5243

    Article  CAS  PubMed  Google Scholar 

  • Spencer LA, Weller PF (2010) Eosinophils and Th2 immunity: contemporary insights. Immunol Cell Biol 88:250–256

    Article  PubMed  Google Scholar 

  • Spencer LA, Melo RC, Perez SA, Bafford SP, Dvorak AM, Weller PF (2006) Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proc Natl Acad Sci USA 103:3333–3338

    Article  CAS  PubMed  Google Scholar 

  • Spencer LA, Szela CT, Perez SA, Kirchhoffer CL, Neves JS, Radke AL, Weller PF (2009) Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. J Leukoc Biol 85:117–123

    Article  CAS  PubMed  Google Scholar 

  • Spik I, Brenuchon C, Angeli V, Staumont D, Fleury S, Capron M, Trottein F, Dombrowicz D (2005) Activation of the prostaglandin D2 receptor DP2/CRTH2 increases allergic inflammation in mouse. J Immunol 174:3703–3708

    CAS  PubMed  Google Scholar 

  • Stenfeldt AL, Wenneras C (2004) Danger signals derived from stressed and necrotic epithelial cells activate human eosinophils. Immunology 112:605–614

    Article  CAS  PubMed  Google Scholar 

  • Straumann A, Kristl J, Conus S, Vassina E, Spichtin HP, Beglinger C, Simon HU (2005) Cytokine expression in healthy and inflamed mucosa: probing the role of eosinophils in the digestive tract. Inflamm Bowel Dis 11:720–726

    Article  PubMed  Google Scholar 

  • Sullivan SK, McGrath DA, Liao F, Boehme SA, Farber JM, Bacon KB (1999) MIP-3alpha induces human eosinophil migration and activation of the mitogen-activated protein kinases (p42/p44 MAPK). J Leukoc Biol 66:674–682

    CAS  PubMed  Google Scholar 

  • Sur S, Glitz DG, Kita H, Kujawa SM, Peterson EA, Weiler DA, Kephart GM, Wagner JM, George TJ, Gleich GJ, Leiferman KM (1998) Localization of eosinophil-derived neurotoxin and eosinophil cationic protein in neutrophilic leukocytes. J Leukoc Biol 63:715–722

    CAS  PubMed  Google Scholar 

  • Svensson L, Wenneras C (2005) Human eosinophils selectively recognize and become activated by bacteria belonging to different taxonomic groups. Microbes Infect 7:720–728

    CAS  PubMed  Google Scholar 

  • Swartz JM, Dyer KD, Cheever AW, Ramalingam T, Pesnicak L, Domachowske JB, Lee JJ, Lee NA, Foster PS, Wynn TA, Rosenberg HF (2006) Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood 108:2420–2427

    Article  CAS  PubMed  Google Scholar 

  • Takatsu K, Takaki S, Hitoshi Y (1994) Interleukin-5 and its receptor system: implications in the immune system and inflammation. Adv Immunol 57:145–190

    Article  CAS  PubMed  Google Scholar 

  • Taliaferro WH, Sarles MP (1939) The cellular reactions in the skin, lungs, and intestine of normal and immune rats after infection with Nippostrongylus brasiliensis. J Infect Dis 64:157–192

    Article  Google Scholar 

  • Tepper RI, Coffman RL, Leder P (1992) An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science 257:548–551

    Article  CAS  PubMed  Google Scholar 

  • Terness P, Bauer TM, Rose L, Dufter C, Watzlik A, Simon H, Opelz G (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2, 3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457

    Article  CAS  PubMed  Google Scholar 

  • Thomas EL, Fishman M (1986) Oxidation of chloride and thiocyanate by isolated leukocytes. J Biol Chem 261:9694–9702

    CAS  PubMed  Google Scholar 

  • Thorne KJ, Glauert AM, Svvennsen RJ, Franks D (1979) Phagocytosis and killing of Trypanosoma dionisii by human neutrophils, eosinophils and monocytes. Parasitology 79:367–379

    Article  CAS  PubMed  Google Scholar 

  • Throsby M, Herbelin A, Pleau JM, Dardenne M (2000) CD11c+ eosinophils in the murine thymus: developmental regulation and recruitment upon MHC class I-restricted thymocyte deletion. J Immunol 165:1965–1975

    CAS  PubMed  Google Scholar 

  • Tomimori Y, Muto T, Fukami H, Saito K, Horikawa C, Tsuruoka N, Saito M, Sugiura N, Yamashiro K, Sumida M, Kakutani S, Fukuda Y (2002) Chymase participates in chronic dermatitis by inducing eosinophil infiltration. Lab Invest 82:789–794

    CAS  PubMed  Google Scholar 

  • Trulson A, Nilsson S, Venge P (1997) The eosinophil granule proteins in serum, but not the oxidative metabolism of the blood eosinophils, are increased in cancer. Br J Haematol 98:312–314

    Article  CAS  PubMed  Google Scholar 

  • Tulic MK, Sly PD, Andrews D, Crook M, Davoine F, Odemuyiwa SO, Charles A, Hodder ML, Prescott SL, Holt PG, Moqbel R (2009) Thymic indoleamine 2, 3-dioxygenase-positive eosinophils in young children: potential role in maturation of the naive immune system. Am J Pathol 175:2043–2052

    Article  CAS  PubMed  Google Scholar 

  • van Rijt LS, Vos N, Hijdra D, de Vries VC, Hoogsteden HC, Lambrecht BN (2003) Airway eosinophils accumulate in the mediastinal lymph nodes but lack antigen-presenting potential for naive T cells. J Immunol 171:3372–3378

    PubMed  Google Scholar 

  • Voehringer D, Shinkai K, Locksley RM (2004) Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20:267–277

    Article  CAS  PubMed  Google Scholar 

  • Voehringer D, Reese TA, Huang X, Shinkai K, Locksley RM (2006) Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J Exp Med 203:1435–1446

    Article  CAS  PubMed  Google Scholar 

  • Wallen N, Kita H, Weiler D, Gleich GJ (1991) Glucocorticoids inhibit cytokine-mediated eosinophil survival. J Immunol 147:3490–3495

    CAS  PubMed  Google Scholar 

  • Walsh GM, Hartnell A, Moqbel R, Cromwell O, Nagy L, Bradley B, Furitsu T, Ishizaka T, Kay AB (1990) Receptor expression and functional status of cultured human eosinophils derived from umbilical cord blood mononuclear cells. Blood 76:105–111

    CAS  PubMed  Google Scholar 

  • Walsh ER, Sahu N, Kearley J, Benjamin E, Kang BH, Humbles A, August A (2008) Strain-specific requirement for eosinophils in the recruitment of T cells to the lung during the development of allergic asthma. J Exp Med 205:1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Wang HB, Weller PF (2008) Pivotal advance: eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production. J Leukoc Biol 83:817–821

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Tan X, Chang H, Huang W, Gonzalez-Crussi F, Hsueh W (1999) Platelet-activating factor receptor mRNA is localized in eosinophils and epithelial cells in rat small intestine: regulation by dexamethasone and gut flora. Immunology 97:447–454

    Article  CAS  PubMed  Google Scholar 

  • Wang HB, Ghiran I, Matthaei K, Weller PF (2007a) Airway eosinophils: allergic inflammation recruited professional antigen-presenting cells. J Immunol 179:7585–7592

    CAS  PubMed  Google Scholar 

  • Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S, Hippe A, Corrigan CJ, Dong C, Homey B, Yao Z, Ying S, Huston DP, Liu YJ (2007b) IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med 204:1837–1847

    Article  CAS  PubMed  Google Scholar 

  • Weinstein D, Sommer JR, Beard JW (1962) Cytochemical localization of an adenosine triphosphate dephosphorylating enzyme in the granules of human eosinophils. Blood 19:612–614

    CAS  PubMed  Google Scholar 

  • Weller PF, Rand TH, Barrett T, Elovic A, Wong DT, Finberg RW (1993) Accessory cell function of human eosinophils. HLA-DR-dependent, MHC-restricted antigen-presentation and IL-1 alpha expression. J Immunol 150:2554–2562

    CAS  PubMed  Google Scholar 

  • Weller PF, Bozza PT, Yu W, Dvorak AM (1999) Cytoplasmic lipid bodies in eosinophils: central roles in eicosanoid generation. Int Arch Allergy Immunol 118:450–452

    Article  CAS  PubMed  Google Scholar 

  • West WH, Tauer KW, Yannelli JR, Marshall GD, Orr DW, Thurman GB, Oldham RK (1987) Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N Engl J Med 316:898–905

    Article  CAS  PubMed  Google Scholar 

  • Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, Borok Z (2005) Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol 166:1321–1332

    CAS  PubMed  Google Scholar 

  • Wills-Karp M (2004) Interleukin-13 in asthma pathogenesis. Immunol Rev 202:175–190

    Article  CAS  PubMed  Google Scholar 

  • Woerly G, Roger N, Loiseau S, Dombrowicz D, Capron A, Capron M (1999) Expression of CD28 and CD86 by human eosinophils and role in the secretion of type 1 cytokines (interleukin 2 and interferon gamma): inhibition by immunoglobulin a complexes. J Exp Med 190:487–495

    Article  CAS  PubMed  Google Scholar 

  • Woerly G, Lacy P, Younes AB, Roger N, Loiseau S, Moqbel R, Capron M (2002) Human eosinophils express and release IL-13 following CD28-dependent activation. J Leukoc Biol 72:769–779

    CAS  PubMed  Google Scholar 

  • Wong DT, Elovic A, Matossian K, Nagura N, McBride J, Chou MY, Gordon JR, Rand TH, Galli SJ, Weller PF (1991) Eosinophils from patients with blood eosinophilia express transforming growth factor beta 1. Blood 78:2702–2707

    CAS  PubMed  Google Scholar 

  • Wong DT, Bowen SM, Elovic A, Gallagher GT, Weller PF (1999) Eosinophil ablation and tumor development. Oral Oncol 35:496–501

    Article  CAS  PubMed  Google Scholar 

  • Wong CK, Cheung PF, Ip WK, Lam CW (2007) Intracellular signaling mechanisms regulating toll-like receptor-mediated activation of eosinophils. Am J Respir Cell Mol Biol 37:85–96

    Article  CAS  PubMed  Google Scholar 

  • Wong CK, Ng SS, Lun SW, Cao J, Lam CW (2009) Signalling mechanisms regulating the activation of human eosinophils by mast-cell-derived chymase: implications for mast cell-eosinophil interaction in allergic inflammation. Immunology 126:579–587

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi N, Anand-Apte B, Lee M, Sasaki T, Fukai N, Shapiro R, Que I, Lowik C, Timpl R, Olsen BR (1999) Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J 18:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Sedgwick JB, Vrtis RF, Busse WW (2000) The effect of transendothelial migration on eosinophil function. Am J Respir Cell Mol Biol 23:379–388

    CAS  PubMed  Google Scholar 

  • Yang D, Rosenberg HF, Chen Q, Dyer KD, Kurosaka K, Oppenheim JJ (2003) Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood 102:3396–3403

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Chen Q, Rosenberg HF, Rybak SM, Newton DL, Wang ZY, Fu Q, Tchernev VT, Wang M, Schweitzer B, Kingsmore SF, Patel DD, Oppenheim JJ, Howard OM (2004) Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol 173:6134–6142

    CAS  PubMed  Google Scholar 

  • Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR, Michalek SM, Rosenberg HF, Zhang N, Oppenheim JJ (2008) Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 205:79–90

    Article  CAS  PubMed  Google Scholar 

  • Yazdanbakhsh M, Tai PC, Spry CJ, Gleich GJ, Roos D (1987) Synergism between eosinophil cationic protein and oxygen metabolites in killing of schistosomula of Schistosoma mansoni. J Immunol 138:3443–3447

    CAS  PubMed  Google Scholar 

  • Yoon J, Ponikau JU, Lawrence CB, Kita H (2008) Innate antifungal immunity of human eosinophils mediated by a beta 2 integrin, CD11b. J Immunol 181:2907–2915

    CAS  PubMed  Google Scholar 

  • Yoshida T, Ikuta K, Sugaya H, Maki K, Takagi M, Kanazawa H, Sunaga S, Kinashi T, Yoshimura K, Miyazaki J, Takaki S, Takatsu K (1996) Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5R alpha-deficient mice. Immunity 4:483–494

    Article  CAS  PubMed  Google Scholar 

  • Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, Simon HU (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14:949–953

    Article  CAS  PubMed  Google Scholar 

  • Yuan Q, Austen KF, Friend DS, Heidtman M, Boyce JA (1997) Human peripheral blood eosinophils express a functional c-kit receptor for stem cell factor that stimulates very late antigen 4 (VLA-4)-mediated cell adhesion to fibronectin and vascular cell adhesion molecule 1 (VCAM-1). J Exp Med 186:313–323

    Article  CAS  PubMed  Google Scholar 

  • Zeiger RS, Yurdin DL, Colten HR (1976) Histamine metabolism. II. Cellular and subcellular localization of the catabolic enzymes, histaminase and histamine methyl transferase, in human leukocytes. J Allergy Clin Immunol 58:172–179

    Article  CAS  PubMed  Google Scholar 

  • Ziegler HK, Unanue ER (1982) Decrease in macrophage antigen catabolism caused by ammonia and chloroquine is associated with inhibition of antigen presentation to T cells. Proc Natl Acad Sci USA 79:175–178

    Article  CAS  PubMed  Google Scholar 

  • Zinchuk O, Fukushima A, Zinchuk V, Fukata K, Ueno H (2005) Direct action of platelet activating factor (PAF) induces eosinophil accumulation and enhances expression of PAF receptors in conjunctivitis. Mol Vis 11:114–123

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa A. Spencer.

Additional information

This work was supported by NIH grant HL095699 and an AHA Grant-in-Aid to L.A.S.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamri, R., Xenakis, J.J. & Spencer, L.A. Eosinophils in innate immunity: an evolving story. Cell Tissue Res 343, 57–83 (2011). https://doi.org/10.1007/s00441-010-1049-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1049-6

Keywords

Navigation