Skip to main content
Log in

Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Swine play important roles as models of human disease. A combination of genetic modification with somatic cell nuclear transfer (SCNT) holds the promise of uncovering the pathogenesis of human diseases and then of developing therapeutic protocols. Unfortunately, the mechanism(s) of nuclear remodeling (a change in the structure of the nucleus) and reprogramming (a change in the transcriptional profile) during SCNT remains unclear. Incomplete remodeling is thought to cause lower cloning efficiency and abnormalities in cloned embryos and offspring. Here, we review the epigenetic regulatory and remodeling events that occur during preimplantation development of embryos derived from fertilization or SCNT, with a focus on DNA methylation and histone modifications. The discussion ends with a description of attempts at assisted remodeling of the donor somatic cell nucleus and the SCNT embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adenot PG, Mercier Y, Renard JP, Thompson EM (1997) Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124:4615–4625

    CAS  PubMed  Google Scholar 

  • Armstrong L, Lako M, Dean W, Stojkovic M (2006) Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells 24:805–814

    Article  PubMed  Google Scholar 

  • Beaujean N, Hartshorne G, Cavilla J, Taylor J, Gardner J, Wilmut I, Meehan R, Young L (2004a) Non-conservation of mammalian preimplantaion methylation dynamics. Curr Biol 14:R266–R267

    Article  CAS  PubMed  Google Scholar 

  • Beaujean N, Taylor J, Gardner J, Wilmut I, Meehan R, Young L (2004b) Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol Reprod 71:185–193

    Article  CAS  PubMed  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  CAS  PubMed  Google Scholar 

  • Bonk AJ, Li R, Lai L, Hao Y, Liu Z, Samuel M, Fergason EA, Whitworth KM, Murphy CN, Antoniou E, Prather RS (2007a) Aberrant DNA methylation in porcine in vitro-, parthenogenetic-, and somatic cell nuclear transfer-produced embryos. Mol Reprod Dev 75:250–264

    Article  Google Scholar 

  • Bonk AJ, Cheong H-T, Li R, Lai L, Hao Y, Liu Z, Samuel M, Fergason EA, Whitworth KM, Murphy CN, Antoniou E, Prather RS (2007b) Correlation of developmental differences of nuclear transfer embryo cells to the methylation profiles of nuclear transfer doner cells in swine. Epigenetics 2:179–186

    Article  PubMed  Google Scholar 

  • Bourch’his D, Le Bourhis D, Patin D, Niveleau A, Comizzoli P, Renard J-P, Viegas-Pequignot E (2001) Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol 11:1542–1546

    Article  Google Scholar 

  • Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332:459–461

    Article  CAS  PubMed  Google Scholar 

  • Bui HT, Van Thuan N, Wakayama T, Miyano T (2006) Chromatin remodeling in somatic cells injected into mature pig oocytes. Reproduction 131:1037–1049

    Article  CAS  PubMed  Google Scholar 

  • Carter DB, Lai L, Park KW, Samuel M, Lattimer JC, Jordan KR, Estes DM, Besch-Williford C, Prather RS (2002) Phenotyping of transgenic cloned piglets. Cloning Stem Cells 4:131–145

    Article  CAS  PubMed  Google Scholar 

  • Cervoni N, Szyf M (2001) Demethylase activity is directed by histone acetylation. J Biol Chem 276:40778–40787

    Article  CAS  PubMed  Google Scholar 

  • Cloos PA, Christensen J, Agger K, Helin K (2008) Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 22:1115–1140

    Article  CAS  PubMed  Google Scholar 

  • Corry GN, Tanasijevic B, Barry ER, Krueger W, Rasmussen TP (2009) Epigenetic regulatory mechanisms during preimplantation development. Birth Defects Res C Embryo Today 87:297–313

    Article  CAS  PubMed  Google Scholar 

  • Dahl JA, Reiner AH, Klungland A, Wakayama T, Collas P (2010) Histone H3 lysine 27 methylation asymmetry on developmentally-regulated promoters distinguish the first two lineages in mouse preimplantation embryos. PLoS ONE 5:e9150

    Article  PubMed  Google Scholar 

  • Das ZC, Gupta MK, Uhm SJ, Lee HT (2010) Increasing histone acetylation of cloned embryos, but not donor cells, by sodium butyrate improves their in vitro development in pigs. Cell Reprog 12:95–104

    CAS  Google Scholar 

  • Daujat S, Weiss T, Mohn F, Lange UC, Ziegler-Birling C, Zeissler U, Lappe M, Schubeler D, Torres-Padilla ME, Schneider R (2009) H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming. Nat Struct Mol Biol 16:777–781

    Article  CAS  PubMed  Google Scholar 

  • De Sousa PA, Caveney A, Westhusin ME, Watson AJ (1998) Temporal patterns of embryonic gene expression and their dependence on oogenetic factors. Theriogenology 49:115–128

    Article  PubMed  Google Scholar 

  • Dean W, Santos F, Reik W (2003) Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin Cell Dev Biol 14:93–100

    Article  CAS  PubMed  Google Scholar 

  • Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W (2001) Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 98:13734–13738

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Wang Y, Zhang D, Wang Y, Guo Z, Zhang Y (2008) Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2′-deoxycytidine and trichostatin A. Theriogenology 70:622–630

    Article  CAS  PubMed  Google Scholar 

  • Enright BP, Sung LY, Chang CC, Yang X, Tian XC (2005) Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2'-deoxycytidine. Biol Reprod 72:944–948

    Article  CAS  PubMed  Google Scholar 

  • Erhardt S, Su IH, Schneider R, Barton S, Bannister AJ, Perez-Burgos L, Jenuwein T, Kouzarides T, Tarakhovsky A, Surani MA (2003) Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130:4235–4248

    Article  CAS  PubMed  Google Scholar 

  • Flach G, Johnson MH, Braude PR, Taylor RA, Bolton VN (1982) The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J 1:681–686

    CAS  PubMed  Google Scholar 

  • Fulka J, Fulka H, Slavik T, Okada K, Fulka J Jr (2006) DNA methylation pattern in pig in vivo produced embryos. Histochem Cell Biol 126:213–217

    Article  CAS  PubMed  Google Scholar 

  • Fulka H, St John JC, Fulka J, Hozak P (2008) Chromatin in early mammalian embryos: achieving the pluripotent state. Differentiation 76:3–14

    CAS  PubMed  Google Scholar 

  • Gehring M, Reik W, Henikoff S (2009) DNA demethylation by DNA repair. Trends Genet 25:82–90

    Article  CAS  PubMed  Google Scholar 

  • Geiman TM, Robertson KD (2002) Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J Cell Biochem 87:117–125

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Van Emburgh BO, Robertson KD (2008) DNA methylation in development and human disease. Mutat Res 647:30–38

    CAS  PubMed  Google Scholar 

  • Han YM, Kang YK, Koo DB, Lee KK (2003) Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology 59:33–44

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa R, Sasaki H (2009) Dynamic transition of Dnmt3b expression in mouse pre- and early post-implantation embryos. Gene Expr Patterns 9:27–30

    Article  CAS  PubMed  Google Scholar 

  • Iager AE, Ragina NP, Ross PJ, Beyhan Z, Cunniff K, Rodriguez RM, Cibelli JB (2008) Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning Stem Cells 10:371–379

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Jobst P, Lai L, Samuel M, Ayares D, Prather RS, Tian XC (2007) Expression levels of growth-regulating imprinted genes in cloned piglets. Cloning Stem Cells 9:97–106

    Article  CAS  PubMed  Google Scholar 

  • Kang YK, Koo DB, Park JS, Choi YH, Chung AS, Lee KK, Han YM (2001a) Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 28:173–177

    Article  CAS  PubMed  Google Scholar 

  • Kang YK, Koo DB, Park JS, Choi YH, Kim HN, Chang WK, Lee KK, Han YM (2001b) Typical demethylation events in cloned pig embryos. Clues on species-specific differences in epigenetic reprogramming of a cloned donor genome. J Biol Chem 276:39980–39984

    Article  CAS  PubMed  Google Scholar 

  • Kang YK, Park JS, Koo DB, Choi YH, Kim SU, Lee KK, Han YM (2002) Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. EMBO J 21:1092–1100

    Article  CAS  PubMed  Google Scholar 

  • Kishigami S, Mizutani E, Ohta H, Hikichi T, Thuan NV, Wakayama S, Bui HT, Wakayama T (2006) Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem Biophys Res Commun 340:183–189

    Article  CAS  PubMed  Google Scholar 

  • Kishigami S, Bui HT, Wakayama S, Tokunaga K, Van Thuan N, Hikichi T, Mizutani E, Ohta H, Suetsugu R, Sata T, Wakayama T (2007) Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer. J Reprod Dev 53:165–170

    Article  PubMed  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    Article  CAS  PubMed  Google Scholar 

  • Kourmouli N, Jeppesen P, Mahadevhaiah S, Burgoyne P, Wu R, Gilbert DM, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Shi W, Fundele R, Singh PB (2004) Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J Cell Sci 117:2491–2501

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS (2002a) Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089–1092

    Article  CAS  PubMed  Google Scholar 

  • Lai L, Park KW, Cheong HT, Kuhholzer B, Samuel M, Bonk A, Im GS, Rieke A, Day BN, Murphy CN, Carter DB, Prather RS (2002b) Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol Reprod Dev 62:300–306

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Inoue K, Ono R, Ogonuki N, Kohda T, Kaneko-Ishino T, Ogura A, Ishino F (2002) Erasing genomic imprinting memory in mouse clone embryo produced from day 11.5 priomoridal germ cells. Development 129:1807–1817

    Article  CAS  PubMed  Google Scholar 

  • Lepikhov K, Walter J (2004) Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol 4:12

    Article  PubMed  Google Scholar 

  • Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    Article  CAS  PubMed  Google Scholar 

  • Li J, Svarcova O, Villemoes K, Kragh PM, Schmidt M, Bogh IB, Zhang Y, Du Y, Lin L, Purup S, Xue Q, Bolund L, Yang H, Maddox-Hyttel P, Vajta G (2008) High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos. Theriogenology 70:800–808

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Kim JM, Aoki F (2004) Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development 131:2269–2280

    Article  CAS  PubMed  Google Scholar 

  • Lunney JK (2007) Advances in swine biomedical model genomics. Int J Biol Sci 3:179–184

    CAS  PubMed  Google Scholar 

  • Luth JA (2002) Histone acetylation patterns in preimplantation porcine embryos. Master’s Thesis, University of Missouri-Columbia

  • Mann MR, Chung YG, Nolen LD, Verona RI, Latham KE, Bartolomei MS (2003) Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol Reprod 69:902–914

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Diaz MA, Che L, Albornoz M, Sendda MM, Collis D, Coutinho ARS, El-Beirouthi N, Laurin D, Zhao X, Bordignon V (2010) Pre- and postimplantation development of swine-cloned embryos derived from fibroblasts and bone marrow cells after inhibition of histone deacetylases. Cell Reprog 12:85–94

    CAS  Google Scholar 

  • Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502

    Article  CAS  PubMed  Google Scholar 

  • Meng Q, Polgar Z, Liu J, Dinnyes A (2009) Live birth of somatic cell-cloned rabbits following trichostatin A treatment and cotransfer of parthenogenetic embryos. Cloning Stem Cells 11:203–208

    Article  CAS  PubMed  Google Scholar 

  • Miao F, Natarajan R (2005) Mapping global histone methylation patterns in the coding regions of human genes. Mol Cell Biol 25:4650–4661

    Article  CAS  PubMed  Google Scholar 

  • Mitalipov SM, Zhou Q, Byrne JA, Ji WZ, Norgren RB, Wolf DP (2007) Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Hum Reprod 22:2232–2242

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi K, Mori H, Mizobe Y, Asasaka E, Ozawa A, Yoshida M, Sato M (2010) Valproic acid enhances in vitro development and oct-3/4 expression of miniature pig somatic cell nuclear transfer embryos. Cell Reprog 12:67–74

    CAS  Google Scholar 

  • Monk M (1987) Genomic imprinting. Memories of mother and father. Nature 328:203–204

    Article  CAS  PubMed  Google Scholar 

  • Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14:R47–R58

    Article  CAS  PubMed  Google Scholar 

  • Ohgane J, Wakayama T, Senda S, Yamazaki Y, Inoue K, Ogura A, Marh J, Tanaka S, Yanagimachi R, Shiota K (2004) The Sall3 locus is an epigenetic hotspot of aberrant DNA methylation associated with placentomegaly of cloned mice. Genes Cells 9:253–260

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 263:554–558

    Article  Google Scholar 

  • Park KE, Magnani L, Cabot RA (2009) Differential remodeling of mono- and trimethylated H3K27 during porcine embryo development. Mol Reprod Dev 76:1033–1042

    Article  CAS  PubMed  Google Scholar 

  • Park KE, Johnson CM, Magnani L, Wang X, Biancardi MN, Cabot RA (2010) Global H3K9 dimethylation status is not affected by transcription, translation, or DNA replication in porcine zygotes. Mol Reprod Dev 77:420–429

    Article  CAS  PubMed  Google Scholar 

  • Prather RS (2007) Nuclear remodeling and nuclear reprogramming for making transgenic pigs by nuclear transfer. Adv Exp Med Biol 591:1–13

    Article  PubMed  Google Scholar 

  • Prather RS (2008) Genetically modified pigs for medicine and agriculture. Biotech Gen Eng Rev 25:245–266

    CAS  Google Scholar 

  • Prather RS, Ross JW, Isom SC, Green JA (2009) Transcriptional, post-transcriptional and epigenetic control of porcine oocyte maturation and embryogenesis. Soc Reprod Fertil Suppl 66:165–176

    CAS  PubMed  Google Scholar 

  • Reik W, Santos F, Mitsuya K, Morgan H, Dean W (2003) Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment. Philos Trans R Soc Lond B Biol Sci 358:1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Osorio N, Wang Z, Kasinathan P, Page GP, Robl JM, Memili E (2009) Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos. BMC Genomics 10:190

    Article  PubMed  Google Scholar 

  • Santos F, Dean W (2004) Epigenetic reprogramming during early development in mammals. Reproduction 127:643–651

    Article  CAS  PubMed  Google Scholar 

  • Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    Article  CAS  PubMed  Google Scholar 

  • Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, Reik W, Dean W (2003) Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 13:1116–1121

    Article  CAS  PubMed  Google Scholar 

  • Santos F, Peters AH, Otte AP, Reik W, Dean W (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280:225–236

    Article  CAS  PubMed  Google Scholar 

  • Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6:73–77

    Article  CAS  PubMed  Google Scholar 

  • Schoenbeck RA, Peters MS, Rickords LF, Stumpf TT, Prather RS (1992) Characterization of deoxyribonucleic acid synthesis and the transition from maternal to embryonic control in the 4-cell porcine embryo. Biol Reprod 47:1118–1125

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Wu J (2009) Epigenetic regulation in mammalian preimplantation embryo development. Reprod Biol Endocrinol 7:59

    Article  PubMed  Google Scholar 

  • Shi LH, Miao YL, Ouyang YC, Huang JC, Lei ZL, Yang JW, Han ZM, Song XF, Sun QY, Chen DY (2008) Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos. Dev Dyn 237:640–648

    Article  PubMed  Google Scholar 

  • Sims RJ 3rd, Nishioka K, Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. Trends Genet 19:629–639

    Article  CAS  PubMed  Google Scholar 

  • Suemizu H, Aiba K, Yoshikawa T, Sharov AA, Shimozawa N, Tamaoki N, Ko MS (2003) Expression profiling of placentomegaly associated with nuclear transplantation of mouse ES cells. Dev Biol 253:36–53

    Article  CAS  PubMed  Google Scholar 

  • Svensson K, Mattsson R, James TC, Wentzel P, Pilartz M, MacLaughlin J, Miller SJ, Olsson T, Eriksson UJ, Ohlsson R (1998) The paternal allele of the H19 gene is progressively silenced during early mouse development: the acetylation status of histones may be involved in the generation of variegated expression patterns. Development 125:61–69

    CAS  PubMed  Google Scholar 

  • Tamada H, Kikyo N (2004) Nuclear reprogramming in mammalian somatic cell nuclear cloning. Cytogenet Genome Res 105:285–291

    Article  CAS  PubMed  Google Scholar 

  • Tsuji Y, Kato Y, Tsunoda Y (2009) The developmental potential of mouse somatic cell nuclear trasferred oocytes treated with trichostatin A and 5-ada-2′-deoxycytidine. Zygote 17:109–115

    Article  CAS  PubMed  Google Scholar 

  • Vajta G, Gjerris M (2006) Science and technology of farm animal cloning: state of the art. Anim Reprod Sci 92:211–230

    Article  PubMed  Google Scholar 

  • Van Thuan N, Bui HT, Kim JH, Hikichi T, Wakayama S, Kishigami S, Mizutani E, Wakayama T (2009) The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction 138:309–317

    Article  PubMed  Google Scholar 

  • Wang R, Kou Z, Zhang Y, Gao S (2007) Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos. Biol Reprod 77:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  PubMed  Google Scholar 

  • Wrenzycki C, Herrmann D, Gebert C, Carnwath JW, Niemann H (2006) Gene expression and methylation patterns in cloned embryos. Methods Mol Biol 348:285–304

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Smith SL, Tian XC, Lewin HA, Renard JP, Wakayama T (2007) Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 39:295–302

    Article  CAS  PubMed  Google Scholar 

  • Young L, Beaujean N (2004) DNA methylation in the preimplantaiton sheep embryo: the differing stories of the mouse and sheep. Anim Reprod Sci 82–83:61–78

    Article  PubMed  Google Scholar 

  • Zhang M, Wang F, Kou Z, Zhang Y, Gao S (2009) Defective chromatin structure in somatic cell cloned mouse embryos. J Biol Chem 284:24981–24987

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Ross JW, Hao Y, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS (2009) Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biol Reprod 81:525–530

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Hao Y, Ross JW, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS (2010) Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell Reprog 12:75–83

    CAS  Google Scholar 

  • Zuccotti M, Garagna S, Redi CA (2000) Nuclear transfer, genome reprogramming and novel opportunities in cell therapy. J Endocrinol Invest 23:623–629

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Rocio M. Rivera and Ryan A. Cabot for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall S. Prather.

Additional information

The authors acknowledge funding, during the writing of this review, from Food for the 21st Century and from the National Institutes of Health National Center for Research Resources (RR13438, RR18877).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Whyte, J. & Prather, R.S. Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res 341, 13–21 (2010). https://doi.org/10.1007/s00441-010-1000-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1000-x

Keywords

Navigation