Skip to main content

Advertisement

Log in

Vascular endothelium in atherosclerosis

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Their strategic location between blood and tissue and their constitutive properties allow endothelial cells (EC) to monitor the transport of plasma molecules, by employing bidirectional receptor-mediated and receptor-independent transcytosis and endocytosis, and to regulate vascular tone, cellular cholesterol and lipid homeostasis. These cells are also involved in signal transduction, immunity, inflammation and haemostasis. Cardiovascular risk factors, such as hyperlipaemia/dyslipidaemia trigger the molecular machinery of EC to respond to insults by modulation of their constitutive functions followed by dysfunction and ultimately by injury and apoptosis. The gradual activation of EC consists initially in the modulation of two constitutive functions: (1) permeability, i.e. increased transcytosis of lipoproteins, and (2) biosynthetic activity, i.e. enhanced synthesis of the basement membrane and extracellular matrix. The increased transcytosis and the reduced efflux of β-lipoproteins (βLp) lead to their retention within the endothelial hyperplasic basal lamina as modified lipoproteins (MLp) and to their subsequent alteration (oxidation, glycation, enzymatic modifications). MLp generate chemoattractant and inflammatory molecules, triggering EC dysfunction (appearance of new adhesion molecules, secretion of chemokines, cytokines), characterised by monocyte recruitment, adhesion, diapedesis and residence within the subendothelium. In time, EC in the athero-prone areas alter their net negative surface charge, losing their non-thrombogenic ability, become loaded with lipid droplets and turn into foam cells. Prolonged and/or repeated exposure to cardiovascular risk factors can ultimately exhaust the protective effect of the endogenous anti-inflammatory system within EC. As a consequence, EC may progress to senescence, lose their integrity and detach into the circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adachi H, Tsujimoto M (2006) Endothelial scavenger receptors. Prog Lipid Res 45:379–404

    Article  PubMed  CAS  Google Scholar 

  • Aikawa M, Sugiyama S, Hill CC, Voglic SJ, Rabkin E, Fukumoto Y, Schoen FJ, Witztum JL, Libby P (2002) Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation 106:1390–1396

    Article  PubMed  CAS  Google Scholar 

  • Alipour A, Elte JW, Zaanen HC van, Rietveld AP, Cabezas MC (2007) Postprandial inflammation and endothelial dysfunction. Biochem Soc Trans 35:466–469

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, Zee R van der, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  • Boulanger CM, Amabile N, Tedgui A (2006) Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension 48:180–186

    Article  PubMed  CAS  Google Scholar 

  • Bournazos S, Rennie J, Hart SP, Fox KA, Dransfield I (2008) Monocyte functional responsiveness after PSGL-1-mediated platelet adhesion is dependent on platelet activation status. Arterioscler Thromb Vasc Biol 28:1491–1498

    Article  PubMed  CAS  Google Scholar 

  • Braam B, Verhaar MC (2007) Understanding eNOS for pharmacological modulation of endothelial function: a translational view. Curr Pharm Des 13:1727–1740

    Article  PubMed  CAS  Google Scholar 

  • Brown MD, Jin L, Jien ML, Matsumoto AH, Helm GA, Lusis AJ, Frank JS, Shi W (2004) Lipid retention in the arterial wall of two mouse strains with different atherosclerosis susceptibility. J Lipid Res 45:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Cai H (2005) NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ Res 96:818–822

    Article  PubMed  CAS  Google Scholar 

  • Chadjichristos CE, Kwak BR (2007) Connexins: new genes in atherosclerosis. Ann Med 39:402–411

    Article  PubMed  CAS  Google Scholar 

  • Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Stone PH, Feldman CL (2007) Risk stratification of individual coronary lesions using local endothelial shear stress: a new paradigm for managing coronary artery disease. Curr Opin Cardiol 22:552–564

    PubMed  Google Scholar 

  • Chen XP, Zhang TT, Du GH (2007) Lectin-like oxidized low-density lipoprotein receptor-1, a new promising target for the therapy of atherosclerosis? Cardiovasc Drug Rev 25:146–161

    Article  PubMed  CAS  Google Scholar 

  • Constantinescu E, Alexandru D, Alexandru V, Raicu M, Simionescu M (2000) Endothelial cell-derived foam cells fail to express adhesion molecules (ICAM-1 and VCAM-1) for monocytes. J Submicrosc Cytol Pathol 32:195–201

    PubMed  CAS  Google Scholar 

  • Cubbon RM, Rajwani A, Stephen B, Wheatcroft SB (2007) The impact of insulin resistance on endothelial function, progenitor cells and repair. Diabetes Vasc Dis Res 4:103–11

    Article  Google Scholar 

  • Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA Jr (2004) Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci USA 101:14871–14876

    Article  PubMed  CAS  Google Scholar 

  • Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295

    PubMed  Google Scholar 

  • Dejana E, Valiron O, Navarro P, Lampugnani MG (1997) Intercellular junctions in the endothelium and the control of vascular permeability. Ann N Y Acad Sci 811:36–43

    Article  PubMed  CAS  Google Scholar 

  • Després JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, Rodés-Cabau J, Bertrand OF, Poirier P (2008) Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 28:1039–1049

    Article  PubMed  CAS  Google Scholar 

  • Dominguez JH, Mehta JL, Li D, Wu P, Kelly KJ, Packer CS, Temm C, Goss E, Cheng L, Zhang S, Patterson CE, Hawes JW, Peterson R (2008) Anti-LOX-1 therapy in rats with diabetes and dyslipidaemia: ablation of renal vascular and epithelial manifestations. Am J Physiol Renal Physiol 294:F110–F119

    Article  PubMed  CAS  Google Scholar 

  • Elahi MM, Naseem KM, Matata BM (2007) Nitric oxide in blood. The nitrosative-oxidative disequilibrium hypothesis on the pathogenesis of cardiovascular disease. FEBS J 274:906–923

    Article  PubMed  CAS  Google Scholar 

  • Filip DA, Nistor A, Bulla A, Radu A, Simionescu M (1987) Cellular events in the development of the valvular atherosclerotic lesions induced by experimental atherosclerosis. Atherosclerosis 67:199–214

    Article  PubMed  CAS  Google Scholar 

  • Flood C, Gustafsson M, Pitas RE, Arnaboldi L, Walzem RL, Boren J (2004) Molecular mechanism for changes in proteoglycan binding on compositional changes of the core and the surface of low-density lipoprotein–containing human apolipoprotein B100. Arterioscler Thromb Vasc Biol 24:564–570

    Article  PubMed  CAS  Google Scholar 

  • Fryer BH, Wang C, Vedantam S, Zhou GL, Jin S, Fletcher L, Simon MC, Field J (2006) cGMP-dependent protein kinase phosphorylates p21-activated kinase (Pak) 1, inhibiting Pak/Nck binding and stimulating Pak/vasodilator-stimulated phosphoprotein association. J Biol Chem 281:11487–11495

    Article  PubMed  CAS  Google Scholar 

  • García-Cardeña G, Gimbrone MA Jr (2006) Biomechanical modulation of endothelial phenotype: implications for health and disease. Handb Exp Pharmacol 176:79–95

    Article  PubMed  Google Scholar 

  • Georgescu A, Alexandru N, Constantinescu E, Popov D (2006) Effect of gap junction uncoupler heptanol on resistance arteries reactivity in experimental models of diabetes, hyperlipemia and hyperlipemia-diabetes. Vascul Pharmacol 44:513–518

    Article  PubMed  CAS  Google Scholar 

  • Goon PK, Boos CJ, Lip GY (2005) Circulating endothelial cells: markers of vascular dysfunction. Clin Lab 51:531–538

    PubMed  CAS  Google Scholar 

  • Goua M, Mulgrew S, Frank J, Rees D, Sneddon AA, Wahle KW (2008) Regulation of adhesion molecule expression in human endothelial and smooth muscle cells by omega-3 fatty acids and conjugated linoleic acids: involvement of the transcription factor NF-kappaB? Prostaglandins Leukot Essent Fatty Acids 78:33–43

    Article  PubMed  CAS  Google Scholar 

  • Hansson GK, Robertson AK, Söderberg-Nauclér C (2006) Inflammation and atherosclerosis. Annu Rev Pathol 1:297–329

    Article  PubMed  CAS  Google Scholar 

  • Heeneman S, Sluimer JC, Daemen MJ (2007) Angiotensin-converting enzyme and vascular remodeling. Circ Res 101:441–454

    Article  PubMed  CAS  Google Scholar 

  • Hurt-Camejo E, Camejo G, Sartipy P (2000) Phospholipase A2 and small, dense low-density lipoprotein. Curr Opin Lipidol 11:465–471

    Article  PubMed  CAS  Google Scholar 

  • Jones SP, Bolli R (2006) The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 40:16–23

    Article  PubMed  CAS  Google Scholar 

  • Lavi S, Lavi R, McConnell JP, Lerman LO, Lerman A (2007) Lipoprotein-associated phospholipase A(2): review of its role as a marker and a potential participant in coronary endothelial dysfunction. Mol Diagn Ther 11:219–226

    PubMed  CAS  Google Scholar 

  • Li D, Liu L, Chen H, Sawamura T, Ranganathan S, Mehta JL (2003) LOX-1 mediates oxidized low-density lipoprotein-induced expression of matrix metalloproteinases in human coronary artery endothelial cells. Circulation 107:612–617

    Article  PubMed  CAS  Google Scholar 

  • Manea A, Manea SA, Gafencu AV, Raicu M, Simionescu M (2008) AP-1-dependent transcriptional regulation of NADPH oxidase in human aortic smooth muscle cells: role of p22phox subunit. Arterioscler Thromb Vasc Biol 28:878–885

    Article  PubMed  CAS  Google Scholar 

  • Mehrabi MR, Sinzinger H, Ekmekcioglu C, Tamaddon F, Plesch K, Glogar HD, Maurer G, Stefenelli T, Lang IM (2000) Accumulation of oxidized LDL in human semilunar valves correlates with coronary atherosclerosis. Cardiovasc Res 45:874–882

    Article  PubMed  CAS  Google Scholar 

  • Mehta D, Malik A (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367

    Article  PubMed  CAS  Google Scholar 

  • Moore KJ, Freeman MW (2006) Scavenger receptors in atherosclerosis beyond lipid uptake. Arterioscler Thromb Vasc Biol 26:1702–1711

    Article  PubMed  CAS  Google Scholar 

  • Mora R, Lupu F, Simionescu N (1989) Cytochemical localization of beta-lipoproteins and their components in successive stages of hyperlipidemic atherogenesis of rabbit aorta. Atherosclerosis 79:183–195

    Article  PubMed  CAS  Google Scholar 

  • Nieuwdorp M, Meuwese MC, Vink H, Hoekstra JB, Kastelein JJ, Stroes ES (2005) The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol 16:507–511

    Article  PubMed  CAS  Google Scholar 

  • Nistor A, Bulla A, Filip DA, Radu A (1987) The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis 68:159–173

    Article  PubMed  CAS  Google Scholar 

  • Öörni K, Posio P, Ala-Korpela M, Jauhiainen M, Kovanen P (2005) Sphingomyelinase induces aggregation and fusion of small VLDL and IDL particles and increases their retention to human arterial proteoglycans. Arterioscler Thromb Vasc Biol 25:1678–1683

    Article  PubMed  CAS  Google Scholar 

  • Orr AW, Stockton R, Simmers MB, Sanders JM, Sarembock IJ, Blackman BR, Schwartz MA (2007) Matrix-specific p21-activated kinase activation regulates vascular permeability in atherogenesis. J Cell Biol 176:719–727

    Article  PubMed  CAS  Google Scholar 

  • Papaharalambus CA, Griendling KK (2007) Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med 17:48–54

    Article  PubMed  CAS  Google Scholar 

  • Pennathur S, Heinecke JW (2007) Oxidative stress and endothelial dysfunction in vascular disease. Curr Diab Rep 7:257–264

    Article  PubMed  CAS  Google Scholar 

  • Presta M, Camozzi M, Salvatori G, Rusnati M (2007) Role of the soluble pattern recognition receptor PTX3 in vascular biology. J Cell Mol Med 11:723–738

    Article  PubMed  CAS  Google Scholar 

  • Ritman EL, Lerman A (2007) The dynamic vasa vasorum. Cardiovasc Res 75:649–658

    Article  PubMed  CAS  Google Scholar 

  • Schmidt TS, Alp NJ (2007) Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci 113:47–63

    PubMed  CAS  Google Scholar 

  • Schwartz SM, Galis ZS, Rosenfeld ME, Falk E (2007) Plaque rupture in humans and mice. Arterioscler Thromb Vasc Biol 27:705–713

    Article  PubMed  CAS  Google Scholar 

  • Schwenke DC, StClair RW (1993) Influx, efflux, and accumulation of LDL in normal arterial areas and atherosclerotic lesions of white Carneau pigeons with naturally occurring and cholesterol-aggravated aortic atherosclerosis. Arterioscler Thromb 13:1368–1381

    PubMed  CAS  Google Scholar 

  • Sima A, Stancu C (2001) Statins: mechanism of action and effects. J Cell Mol Med 5:378–387

    Article  PubMed  Google Scholar 

  • Sima A, Bulla A, Simionescu N (1990) Experimental obstructive coronary atherosclerosis in the hyperlipidemic hamster. J Submicrosc Cytol Pathol 22:1–16

    PubMed  CAS  Google Scholar 

  • Simionescu M (2007) Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 27:266–274

    Article  PubMed  CAS  Google Scholar 

  • Simionescu M, Antohe F (2006) Functional ultrastructure of the vascular endothelium: changes in various pathologies. Handb Exp Pharmacol 176:41–69

    Article  PubMed  Google Scholar 

  • Simionescu M, Simionescu N, Silbert JE, Palade GE (1991) Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterization of their anionic sites. J Cell Biol 90:614–621

    Article  Google Scholar 

  • Simionescu N, Vasile E, Lupu F, Popescu G, Simionescu M (1986) Prelesional events in atherogenesis: accumulation of extracellular cholesterol rich liposomes in the arterial intima and cardiac valves of hyperlipidemic rabbits. Am J Pathol 123:85–101

    Google Scholar 

  • Steinberg D (2005) An interpretive history of the cholesterol controversy. III. Mechanistically defining the role of hyperlipidaemia. J Lipid Res 46:2037–2051

    Article  PubMed  CAS  Google Scholar 

  • Steinberg D (2006) An interpretive history of the cholesterol controversy. Part V. The discovery of the statins and the end of the controversy. J Lipid Res 47:1339–1351

    Article  PubMed  CAS  Google Scholar 

  • Tabas I, Williams KJ, Borén J (2007) Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116:1832–1844

    Article  PubMed  CAS  Google Scholar 

  • Tirziu D, Dobrian A, Tasca C, Simionescu M, Simionescu N (1995) Intimal thickenings of human aorta contain modified reassembled lipoproteins. Atherosclerosis 112:101–114

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg BM, Spaan JA, Rolf TM, Vink H (2006) Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am J Physiol Heart Circ Physiol 290:H915–H920

    Article  PubMed  CAS  Google Scholar 

  • Weber C, Schober A, Zernecke A (2004) Chemokines: key regulators of mononuclear cell recruitment in atherosclerotic vascular disease. Arterioscler Thromb Vasc Biol 24:1997–2008

    Article  PubMed  CAS  Google Scholar 

  • Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G (2006) Circulating CD31/annexin V-apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 26:112–116

    Article  PubMed  CAS  Google Scholar 

  • Williams KJ, Tabas I (2005) Lipoprotein retention and clues for atheroma regression. Arterioscler Thromb Vasc Biol 25:1536–1540

    Article  PubMed  CAS  Google Scholar 

  • Xu Q (2007) Progenitor cells in vascular repair. Curr Opin Lipidol 18:534–539

    Article  PubMed  CAS  Google Scholar 

  • Zheng XY, Liu L (2007) Remnant-like lipoprotein particles impair endothelial function: direct and indirect effects on nitric oxide synthase. J Lipid Res 48:1673–1680

    Article  PubMed  CAS  Google Scholar 

  • Zou MH (2007) Peroxynitrite and protein tyrosine nitration of prostacyclin synthase. Prostaglandins Other Lipid Mediat 82:119–127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This review is a tribute to the memory of our eminent mentor, Professor Nicolae Simionescu, who initiated most of the projects reviewed here. The work of many colleagues who over the years have contributed to the presented data is gratefully acknowledged.

Sources of Funding

The work was supported by grants from NIH-USA, the European Community and the COST Action BM0602, the Romanian Academy, and the Romanian Ministry for Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca V. Sima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sima, A.V., Stancu, C.S. & Simionescu, M. Vascular endothelium in atherosclerosis. Cell Tissue Res 335, 191–203 (2009). https://doi.org/10.1007/s00441-008-0678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0678-5

Keywords

Navigation