Skip to main content

Advertisement

Log in

The mitochondrial solute carrier SLC25A5 at Xq24 is a novel candidate gene for non-syndromic intellectual disability

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Loss-of-function mutations in several different neuronal pathways have been related to intellectual disability (ID). Such mutations often are found on the X chromosome in males since they result in functional null alleles. So far, microdeletions at Xq24 reported in males always have been associated with a syndromic form of ID due to the loss of UBE2A. Here, we report on overlapping microdeletions at Xq24 that do not include UBE2A or affect its expression, in patients with non-syndromic ID plus some additional features from three unrelated families. The smallest region of overlap, confirmed by junction sequencing, harbors two members of the mitochondrial solute carrier family 25, SLC25A5 and SLC25A43. However, identification of an intragenic microdeletion including SLC25A43 but not SLC25A5 in a healthy boy excluded a role for SLC25A43 in cognition. Therefore, our findings point to SLC25A5 as a novel gene for non-syndromic ID. This highly conserved gene is expressed ubiquitously with high levels in cortex and hippocampus, and a presumed role in mitochondrial exchange of ADP/ATP. Our data indicate that SLC25A5 is involved in memory formation or establishment, which could add mitochondrial processes to the wide array of pathways that regulate normal cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chen ST, Chang CD, Huebner K, Ku DH, McFarland M, DeRiel JK, Baserga R, Wurzel J (1990) A human ADP/ATP translocase gene has seven pseudogenes and localizes to chromosome X. Somat Cell Mol Genet 16:143–149

    Article  PubMed  CAS  Google Scholar 

  • Claes S, Volcke P, Devriendt K, Holvoet M, Raeymaekers P, Cassiman JJ, Fryns JP (1999) Regional localization of a gene for non-specific XLMR to Xp11.3-p11. 23 (MRX51) and tentative localization of an MRX gene to Xq23-q26.1. Am J Med Genet 85:283–287

    Article  PubMed  CAS  Google Scholar 

  • de Leeuw N, Bulk S, Green A, Jaeckle-Santos L, Baker LA, Zinn AR, Kleefstra T, van der Smagt JJ, Vianne Morgante AM, de Vries BB, van Bokhoven H, de Brouwer AP (2010) UBE2A deficiency syndrome: mild to severe intellectual disability accompanied by seizures, absent speech, urogenital, and skin anomalies in male patients. Am J Med Genet A 152A:3084–3090

    Article  PubMed  Google Scholar 

  • Duker AL, Ballif BC, Bawle EV, Person RE, Mahadevan S, Alliman S, Thompson R, Traylor R, Bejjani BA, Shaffer LG, Rosenfeld JA, Lamb AN, Sahoo T (2010) Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur J Hum Genet 18:1196–1201

    Article  PubMed  CAS  Google Scholar 

  • Froyen G, Van Esch H, Bauters M, Hollanders K, Frints SG, Vermeesch JR, Devriendt K, Fryns JP, Marynen P (2007) Detection of genomic copy number changes in patients with idiopathic mental retardation by high-resolution X-array-CGH: important role for increased gene dosage of XLMR genes. Hum Mutat 28:1034–1042

    Article  PubMed  CAS  Google Scholar 

  • Froyen G, Corbett M, Vandewalle J, Jarvela I, Lawrence O, Meldrum C, Bauters M, Govaerts K, Vandeleur L, Van Esch H, Chelly J, Sanlaville D, Van Bokhoven H, Ropers HH, Laumonnier F, Ranieri E, Schwartz CE, Abidi F, Tarpey PS, Futreal PA, Whibley A, Raymond FL, Stratton MR, Fryns JP, Scott R, Peippo M, Sipponen M, Partington M, Mowat D, Field M, Hackett A, Marynen P, Turner G, Gécz J (2008) Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3 ubiquitin ligase HUWE1 are associated with mental retardation. Am J Hum Genet 82:432–443

    Article  PubMed  CAS  Google Scholar 

  • Froyen G, Belet S, Martinez F, Santos-Reboucas CB, Declercq M, Verbeeck J, Donckers L, Berland S, Mayo S, Rosello M, Pimentel MM, Fintelman-Rodrigues N, Hovland R, Dos Rodrigues SS, Raymond FL, Bose T, Corbett MA, Sheffield L, van Ravenswaaij-Arts CM, Dijkhuizen T, Coutton C, Satre V, Siu V, Marynen P (2012) Copy-number gains of HUWE1 due to replication- and recombination-based rearrangements. Am J Hum Genet 91:252–264

    Article  PubMed  CAS  Google Scholar 

  • Gilfillan GD, Selmer KK, Roxrud I, Smith R, Kyllerman M, Eiklid K, Kroken M, Mattingsdal M, Egeland T, Stenmark H, Sjoholm H, Server A, Samuelsson L, Christianson A, Tarpey P, Whibley A, Stratton MR, Futreal PA, Teague J, Edkins S, Gecz J, Turner G, Raymond FL, Schwartz C, Stevenson RE, Undlien DE, Stromme P (2008) SLC9A6 mutations cause X-linked mental retardation, microcephaly, epilepsy, and ataxia, a phenotype mimicking Angelman syndrome. Am J Hum Genet 82:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Hahn KA, Salomons GS, Tackels-Horne D, Wood TC, Taylor HA, Schroer RJ, Lubs HA, Jakobs C, Olson RL, Holden KR, Stevenson RE, Schwartz CE (2002) X-linked mental retardation with seizures and carrier manifestations is caused by a mutation in the creatine-transporter gene (SLC6A8) located in Xq28. Am J Hum Genet 70:1349–1356

    Article  PubMed  CAS  Google Scholar 

  • Haitina T, Lindblom J, Renstrom T, Fredriksson R (2006) Fourteen novel human members of mitochondrial solute carrier family 25 (SLC25) widely expressed in the central nervous system. Genomics 88:779–790

    Article  PubMed  CAS  Google Scholar 

  • Hastings PJ, Ira G, Lupski JR (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5:e1000327

    Article  PubMed  CAS  Google Scholar 

  • Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch 447:465–468

    Article  PubMed  CAS  Google Scholar 

  • Honda S, Orii KO, Kobayashi J, Hayashi S, Imamura A, Imoto I, Nakagawa E, Goto Y, Inazawa J (2010) Novel deletion at Xq24 including the UBE2A gene in a patient with X-linked mental retardation. J Hum Genet 55:244–247

    Article  PubMed  Google Scholar 

  • Laumonnier F, Cuthbert PC, Grant SG (2007) The role of neuronal complexes in human X-linked brain diseases. Am J Hum Genet 80:205–220

    Article  PubMed  CAS  Google Scholar 

  • Lenski C, Kooy RF, Reyniers E, Loessner D, Wanders RJ, Winnepenninckx B, Hellebrand H, Engert S, Schwartz CE, Meindl A, Ramser J (2007) The reduced expression of the HADH2 protein causes X-linked mental retardation, choreoathetosis, and abnormal behavior. Am J Hum Genet 80:372–377

    Article  PubMed  CAS  Google Scholar 

  • Lubs HA, Stevenson RE, Schwartz CE (2012) Fragile X and X-linked intellectual disability: four decades of discovery. Am J Hum Genet 90:579–590

    Article  PubMed  CAS  Google Scholar 

  • Nascimento RM, Otto PA, de Brouwer AP, Vianna-Morgante AM (2006) UBE2A, which encodes a ubiquitin-conjugating enzyme, is mutated in a novel X-linked mental retardation syndrome. Am J Hum Genet 79:549–555

    Article  PubMed  CAS  Google Scholar 

  • Ofman R, Ruiter JP, Feenstra M, Duran M, Poll-The BT, Zschocke J, Ensenauer R, Lehnert W, Sass JO, Sperl W, Wanders RJ (2003) 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency is caused by mutations in the HADH2 gene. Am J Hum Genet 72:1300–1307

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F (2012) The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 34:465–484

    Article  PubMed  Google Scholar 

  • Ropers HH (2010) Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet 11:161–187

    Article  PubMed  CAS  Google Scholar 

  • Schwartz CE, May MM, Carpenter NJ, Rogers RC, Martin J, Bialer MG, Ward J, Sanabria J, Marsa S, Lewis JA, Echeverri R, Lubs HA, Voeller K, Simensen RJ, Stevenson RE (2005) Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene. Am J Hum Genet 77:41–53

    Article  PubMed  CAS  Google Scholar 

  • Takenouchi T, Okuno H, Kosaki R, Ariyasu D, Torii C, Momoshima S, Harada N, Yoshihashi H, Takahashi T, Awazu M, Kosaki K (2012) Microduplication of Xq24 and Hartsfield syndrome with holoprosencephaly, ectrodactyly, and clefting. Am J Med Genet A 158A:2537–2541

    Article  PubMed  Google Scholar 

  • Tarpey PS, Smith R, Pleasance E, Whibley A, Edkins S, Hardy C, O’Meara S, Latimer C, Dicks E, Menzies A et al (2009) A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat Genet 41:535–543

    Article  PubMed  CAS  Google Scholar 

  • Vandewalle J, Van Esch H, Govaerts K, Verbeeck J, Zweier C, Madrigal I, Mila M, Pijkels E, Fernandez I, Kohlhase J, Spaich C, Rauch A, Fryns JP, Marynen P, Froyen G (2009) Dosage-dependent severity of the phenotype in patients with mental retardation due to a recurrent copy-number gain at Xq28 mediated by an unusual recombination. Am J Hum Genet 85:809–822

    Article  PubMed  CAS  Google Scholar 

  • Whibley AC, Plagnol V, Tarpey PS, Abidi F, Fullston T, Choma MK, Boucher CA, Shepherd L, Willatt L, Parkin G, Smith R, Futreal PA, Shaw M, Boyle J, Licata A, Skinner C, Stevenson RE, Turner G, Field M, Hackett A, Schwartz CE, Gécz J, Stratton MR, Raymond FL (2010) Fine-scale survey of X chromosome copy number variants and indels underlying intellectual disability. Am J Hum Genet 87:173–188

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the families for their willingness to participate in this study. This work was supported by a grant from the University of Leuven (GOA/12/015). JV and NF are PhD fellows from the IWT (Agentschap voor Innovatie door Wetenschap en Technologie), Belgium. MB is a post-doctoral fellow and HVE and KD are clinical investigators of the FWO-Vlaanderen, Belgium.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Froyen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 54 kb)

439_2013_1322_MOESM2_ESM.tif

Fig. S1. Pedigree of the family with the polymorphic deletion in SLC25A43. A. Family of individual D, who presents with ID, in whom the deletion including exons 1 to 3 of SLC25A43 was detected. This deletion was also present in his healthy mother (I.2) and older brother (II.1). B. Detailed view of the oligo-array data at the SLC25A43 locus (bottom right) and zoomed-in view (top) obtained for individual D showing the location and extent of the microdeletion at Xq24. The deletion removes part of SLC25A43 but does not include SLC25A5. Positions here are based on UCSC Hg18. Supplementary material 2 (TIFF 673 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandewalle, J., Bauters, M., Van Esch, H. et al. The mitochondrial solute carrier SLC25A5 at Xq24 is a novel candidate gene for non-syndromic intellectual disability. Hum Genet 132, 1177–1185 (2013). https://doi.org/10.1007/s00439-013-1322-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1322-3

Keywords

Navigation